精英家教网 > 高中数学 > 题目详情

【题目】已知定义在(0,+∞)上的连续函数y=f(x)满足:xf′(x)﹣f(x)=xex且f(1)=﹣3,f(2)=0.则函数y=f(x)(
A.有极小值,无极大值
B.有极大值,无极小值
C.既有极小值又有极大值
D.既无极小值又无极大值

【答案】A
【解析】解:∵ = = >0,
在(0,+∞)上是增函数,
∵xf′(x)﹣f(x)=xex
∴f′(x)= +ex
∵y=ex在(0,+∞)上是增函数,
∴f′(x)在(0,+∞)上是增函数,
又∵f′(1)=﹣3+e<0,f′(2)=0+e2>0,
故f′(x)在(0,+∞)上先负值,后正值;
故函数y=f(x)有极小值,无极大值,
故选A.
【考点精析】根据题目的已知条件,利用函数的极值与导数的相关知识可以得到问题的答案,需要掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】20160413山东济南非法经营疫苗系列案件披露后,引发社会高度关注,引起公众、受种者和儿童家长对涉案疫苗安全性和有效性的担忧。为采取后续处置措施提供依据,保障受种者的健康,尽快恢复公众接种疫苗的信心,科学严谨地分析涉案疫苗接种给受种者带来的安全性风险和是否有效,对某疫苗预防疾病的效果,进行动物实验,得到下面表格中的统计数据:现从所有试验动物中任取一只,取到注射疫苗动物的概率为

未发病

发病

合计

未注射疫苗

注射疫苗

合计

(1)求列联表中的数据的值;

(2)绘制发病率的条形统计图,并判断疫苗是否有效?

(3)能够有多大把握认为疫苗有效?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据相关规定,24小时内的降水量为日降水量(单位:mm),不同的日降水量对应的降水强度如表:

日降水量

(0,10)

[10,25)

[25,50)

[50,100)

[100,250)

[250,+∞)

降水强度

小雨

中雨

大雨

暴雨

大暴雨

特大暴雨

为分析某市“主汛期”的降水情况,从该市2015年6月~8月有降水记录的监测数据中,随机抽取10天的数据作为样本,具体数据如下:
16 12 23 65 24 37 39 21 36 68
(1)请完成以如表示这组数据的茎叶图;

(2)从样本中降水强度为大雨以上(含大雨)天气的5天中随机选取2天,求恰有1天是暴雨天气的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥P﹣ABC中E,F分别是AC,PC的中点,若EF⊥BF,AB=2,则三棱锥P﹣ABC的外接球的表面积(
A.4π
B.6π
C.8π
D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了比较两种治疗失眠症的药(分别称为药, 药)的疗效,随机地选取18位患者服用药,18位患者服用药,这36位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:),试验的观测结果如下:

服用药的18位患者日平均增加的睡眠时间:

0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3

服用药的18位患者日平均增加的睡眠时间:

3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7

(1)分别计算两组数据的平均数(小数点后保留两位小数),从计算结果看哪种药疗效更好?

2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在其定义域上为单调增函数,求的取值范围;

(2)记的导函数为,当时,证明:存在极小值点,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,圆的极坐标方程为.

(1)求直线的普通方程和圆的直角坐标方程;

(2)若点是直线上的动点,过作直线与圆相切,切点分别为,若使四边形的面积最小,求此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(Ⅰ)求证:BC⊥平面ACFE;
(Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为
(1)求数列{an}的通项公式an
(2)是否存在正整数n,使得 ?若存在,求出n值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案