精英家教网 > 高中数学 > 题目详情
17.已知(x${\;}^{lo{g}_{2}x}$+1)n展开式中有连续三项之比为1:2:3,且展开式的倒数第二项为28,则x的值为(  )
A.2B.$\frac{1}{2}$C.-2D.$\frac{1}{2}$或2

分析 设x${\;}^{lo{g}_{2}x}$=y,利用二项展开式的通项公式求出(y+1)n的展开式的通项,得到连续三项的系数,根据已知条件列出方程,求出n的值,再根据且展开式的倒数第二项为28,求出y=2,根据对数的运算性质计算即可.

解答 解:设x${\;}^{lo{g}_{2}x}$=y
因为(y+1)n的展开式的通项为Tr+1=Cnryn-r根据题意得到Cnr:Cnr+1:Cnr+2=1:2:3
解得n=14,
∵T13+1=C1413y14-13=28,
∴y=2,
∴x${\;}^{lo{g}_{2}x}$=2,
∴(log2x)2=1,
∴log2x=±1,
∴x=2或x=$\frac{1}{2}$,
故选:D.

点评 本题考查利用二项展开式的通项公式解决二项式的有关系数问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|$\frac{2x-1}{{x}^{2}+3x+2}$>0},B={x|x2+ax+b≤0},A∩B=($\frac{1}{2}$,3],试求a,b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对于大于1的自然数m的三次幂可用奇数进行以下方式的“分裂”:23=$\left\{\begin{array}{l}{3}\\{5}\end{array}\right.$,33=$\left\{\begin{array}{l}{7}\\{9}\\{11}\end{array}\right.$,43=$\left\{\begin{array}{l}{13}\\{15}\\{17}\\{19}\end{array}\right.$,….仿此,若m3的“分裂数”中有一个是413,则m=20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)是定义在R上的以3为周期的奇函数,且f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是(  )
A.2B.3C.4D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在圆柱EF中,底面圆的半径为2,母线长为6,$\widehat{AB}$和$\widehat{CD}$的长均为所在圆的周长的$\frac{1}{6}$,若沿着面ABCD将圆柱截开,试求所截得的体积较小的几何体的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x2+y2+z2=1(x>0),则2$\sqrt{3}xy+4yz+{z^2}$的最大值是3,取到最大值时的x=$\frac{\sqrt{7}}{7}$,y=$\frac{\sqrt{21}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个金鱼缸,现已注满水.有大、中、小三个假山,第一次把小假山沉入水中,第二次把小假山取出,把中假山沉入水中,第三次把中假山取出,把小假山和大假山一起沉入水中,现知道每次溢出水量的情况是:第一次是第二次的$\frac{1}{3}$.第三次是第二次的2倍,问三个假山体积之比(  )
A.1:3:5B.1:4:9C.3:6:7D.6:7:8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等差数列{an}的前n项和为Sn,若当首项a1和公差d变化时,a3+a10+a11是一个定值,则下列选项中为定值的是(  )
A.S17B.S16C.S15D.S14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中,正确命题的序号为(  )
A.命题p:?x∈R,使得x2-1≥0,命题q:?x∈R,使得x2-x-1≥0,则命题p∨¬q是假命题
B.非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,“$\overrightarrow{a}$•$\overrightarrow{b}$>0”是“$\overrightarrow{a}$与$\overrightarrow{b}$夹角是锐角”的充要条件
C.“两直线2x-my-1=0与x+my-1=0垂直”是“$m=±\sqrt{2}$”的充要条件
D.“a=1”是“函数f(x)=x2+|x+a-1|(x∈R)为偶函数”的充分不必要条件

查看答案和解析>>

同步练习册答案