精英家教网 > 高中数学 > 题目详情
13.$\int_0^1{3{x^2}dx-\int_0^1{\sqrt{1-{x^2}}dx=}}$(  )
A.$1-\frac{π}{4}$B.2C.$1+\frac{π}{4}$D.π-1

分析 根据定积分的计算和定积分的几何意义即可求出.

解答 解:因为${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx表示以原点为圆心,以半径为1的圆的面积的四分之一,
所以${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx=$\frac{π}{4}$,
因为${∫}_{0}^{1}$3x2dx=x3|${\;}_{0}^{1}$=1,
所以$\int_0^1{3{x^2}dx-\int_0^1{\sqrt{1-{x^2}}dx=}}$1-$\frac{π}{4}$,
故选:A.

点评 本题考查了定积分的计算和定积分的几何意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设f(x)=ax2-(a+1)x+a.
(1)若a=2,解关于x的不等式f(x)>1;
(2)若对任意x>0,不等式f(x))>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=m•2x+2•3x,m∈R.
(1)当m=-9时,求满足f(x+1)>f(x)的实数x的范围;
(2)若$f(x)≤{(\frac{9}{2})^x}$对任意的x∈R恒成立,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列幂函数在定义域内单调递增且为奇函数的是(  )
A.$y={x^{\frac{1}{2}}}$B.y=x2C.y=x3D.y=x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=cos(2x-$\frac{π}{3}$)-cos(2x+$\frac{π}{3}$)+2cos2x-1,x∈R.
(1)求函数f(x)的单调递增区间;
(2)设向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,t)(t≠0),$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为α,若f(α)=1,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在焦点在x轴椭圆中截得的最大矩形的面积范围是[3b2,4b2],则椭圆离心率的范围是(  )
A.$[{\frac{{\sqrt{5}}}{3},\frac{{\sqrt{3}}}{2}}]$B.$[{\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2}}]$C.$[{\frac{1}{2},\frac{{\sqrt{3}}}{2}}]$D.$[{\frac{{\sqrt{2}}}{4},\frac{{\sqrt{3}}}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=($\frac{1}{2}$)x在区间[-2,-1]上的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.点P(x,y,z)关于坐标平面xOy对称的点的坐标是(  )
A.(-x,-y,z)B.(-x,y,z)C.(x,-y,z)D.(x,y,-z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)是定义在R上的奇函数,且当x>0时,其解析式为f(x)=lgx,那么函数y=f(x)-sinx的零点个数共有(  )
A.3个B.4个C.6个D.7个

查看答案和解析>>

同步练习册答案