精英家教网 > 高中数学 > 题目详情

(本小题满分10分)已知函数为偶函数,且在上为增函数.
(1)求的值,并确定的解析式;
(2)若,是否存在实数使在区间上的最大值为2,若存在,求出的值,若不存在,请说明理由.

(1)
(2) 存在实数,使在区间上的最大值为2  

解析试题分析:(1)由条件幂函数,在上为增函数,
得到     
解得                       2分
又因为    
所以                               3分
又因为是偶函数
时,不满足为奇函数;
时,满足为偶函数;
所以                               5分
(2)
得:
上有定义, 
上为增函数.                        7分
时, 

因为所以                       8分
时,

此种情况不存在,                  9分
综上,存在实数,使在区间上的最大值为2     10分
考点:函数的基本性质运用。
点评:解决该试题的关键是能理解函数的奇偶性和单调性的运用,能理解复合函数的性质得到最值,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品在该售价的基础上每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.(14分)
(1)求的函数关系式并直接写出自变量的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
(Ⅰ)已知函数上具有单调性,求实数的取值范围;
(Ⅱ)已知向量两两所成的角相等,且,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)某工厂有214名工人, 现要生产1500件产品, 每件产品由3个A型零件与1个B型零件配套组成, 每个工人加工5个A型零件与3个B型零件所需时间相同. 现将全部工人分为两组, 分别加工一种零件, 同时开始加工. 设加工A型零件的工人有x人, 在单位时间内每人加工A型零件5k(k∈N*), 加工完A型零件所需时间为g(x), 加工完B型零件所需时间为h (x).
 (Ⅰ) 试比较大小, 并写出完成总任务的时间的表达式;
(Ⅱ) 怎样分组才能使完成任务所需时间最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)对于二次函数
(1)指出图像的开口方向、对称轴方程、顶点坐标;
(2)求函数的最值;
(3)分析函数的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
,且
(1)求的最小值及相应 x的值;
(2)若,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足
,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入-总成本);
(2)工厂生产多少台产品时,可使盈利最多?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知,且直线与曲线相切.
(1)若对内的一切实数,不等式恒成立,求实数的取值范围;
(2)当时,求最大的正整数,使得对是自然对数的底数)内的任意个实数都有成立;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)计算(1);
(2).

查看答案和解析>>

同步练习册答案