精英家教网 > 高中数学 > 题目详情

【题目】()(),设.

1)求函数[0π]上的单调减区间;

2)在△ABC中,角ABC所对的边分别为abc,若,求sinB的值.

【答案】1)单调减区间为[π]2

【解析】

1)根据,利用平面向量的数量积和三角恒等变换得到,再利用正弦函数的性质求解.

2)由(1)知,当x[0π],对称轴方程为,由,得到,再由,利用正弦定理得到,从而有求解.

1)∵()()

.

kZ

解得kZ

又∵x[0π],∴解得

∴函数[0π]的单调减区间为[π]

2)由(1)知,其对称轴为kZ

x[0π],对称轴方程为

,即

,∵,且B为锐角,sinB0

解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆的左、右焦点分别为,右顶点为A,上顶点为B,且满足向量

(1),求椭圆的标准方程;

(2)为椭圆上异于顶点的点,以线段PB为直径的圆经过F1,问是否存在过F2的直线与该圆相切?若存在,求出其斜率;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数()的检测数据,结果统计如下:

空气质量

轻度污染

中度污染

重度污染

严重污染

天数

6

14

18

27

25

20

1)从空气质量指数属于的天数中任取3天,求这3天中空气质量至少有2天为优的概率.

2)已知某企业每天因空气质量造成的经济损失(单位:元)与空气质量指数的关系式为假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为,,9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.

i)记该企业9月每天因空气质量造成的经济损失为元,求的分布列;

ii)试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的方程,焦点为,已知点上,且点到点的距离比它到轴的距离大1.

(1)试求出抛物线的方程;

(2)若抛物线上存在两动点在对称轴两侧),满足为坐标原点),过点作直线交两点,若,线段上是否存在定点,使得恒成立?若存在,请求出的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为

A. 15名志愿者身高的极差小于臂展的极差

B. 15名志愿者身高和臂展成正相关关系,

C. 可估计身高为190厘米的人臂展大约为189.65厘米,

D. 身高相差10厘米的两人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中恒不为0.

1)设,求函数x1处的切线方程;

2)若是函数的公共极值点,求证:存在且唯一;

3)设,是否存在实数ab,使得(0)上恒成立?若存在,请求出实数ab满足的条件;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:

AQI指数值

0~50

51~100

101~150

151~200

201~300

>300

空气质量

轻度污染

中度污染

重度污染

严重污染

下图是某市10月1日—20日AQI指数变化趋势:

下列叙述错误的是

A. 这20天中AQI指数值的中位数略高于100

B. 这20天中的中度污染及以上的天数占

C. 该市10月的前半个月的空气质量越来越好

D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为梯形,且ABDC,平面平面

(Ⅰ)证明:平面平面

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点.

1)求的取值范围;

2)设的两个零点,证明:

查看答案和解析>>

同步练习册答案