精英家教网 > 高中数学 > 题目详情
14.设偶函数f(x)对任意x∈R都有f(x)=-$\frac{1}{f(x-3)}$,且当x∈[-3,-2]时,f(x)=4x,则f(119.5)=$\frac{1}{10}$.

分析 先根据条件求出函数的周期,然后根据周期进行化简得f(119.5)=f(-0.5),再根据奇偶性和条件将-0.5转化到区间[-3,-2]上,代入解析式可求出所求.

解答 解:∵偶函数f(x)对任意x∈R都有f(x)=-$\frac{1}{f(x-3)}$,且当x∈[-3,-2]时,f(x)=4x,
∴f(x+3)=-$\frac{1}{f(x)}$,∴f(x+6)=f(x),
即函数f(x)的周期为6,
∴f(119.5)=f(20×6-0.5)=f(-0.5)=-$\frac{1}{f(-0.5+3)}$=-$\frac{1}{f(2.5)}$,
又∵偶函数f(x),当x∈[-3,-2]时,有f(x)=4x,
∴f(119.5)=-$\frac{1}{f(2.5)}$=-$\frac{1}{f(-2.5)}$=-$\frac{1}{4×(-2.5)}$=$\frac{1}{10}$.
故答案为:$\frac{1}{10}$.

点评 本题主要考查了函数的奇偶性和周期性,要特别利用好题中有f(x)=-$\frac{1}{f(x-3)}$的关系式.在解题过程中,条件f(x+a)=-$\frac{1}{f(x)}$通常是告诉我们函数的周期为2a.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,△ABC为正三角形,EC⊥平面ABC,BD∥CE且CE=CA=2BD,M是EA的中点.
(Ⅰ)证明:DM∥平面ABC;
(Ⅱ)若正三角形ABC的边长是a,求三棱锥D-ECA的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,E,F分别是CC1,BC的中点.
(Ⅰ)求证:B1F⊥平面AEF;
(Ⅱ)求锐二面角B1-AE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若△ABC的内角A,B,C所对的边分别为a,b,c,且满足asinB-$\sqrt{3}$bcosA=0
(1)求A;
(2)当a=$\sqrt{7}$,b=2时,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,己知L、K分别是△ABC的边AB、AC的中点.△ABC的内切圆⊙l分别与边BC、CA切于点D、E.求证:KL、DE的交点在∠ABC的角平分线上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的离心率为2,焦点到渐近线的距离为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆C1:(x-1)2+(y-1)2=1关于直线x+y=0对称的圆C2的方程为(  )
A.(x+1)2+(y-1)2=1B.(x-1)2+(y+1)2=1
C.(x+1)2+(y+1)2=1D.(x+1)2+(y-1)2=1或(x-1)2+(y+1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知关于x的方程:x2+2(a-1)x+2a+6=0.
(Ⅰ)若该方程有两个不等实数根,求实数a的取值范围;
(Ⅱ)若该方程有两个不等实数根,且这两个根都大于1,求实数a的取值范围;
(Ⅲ)设函数f(x)=x2+2(a-1)x+2a+6,x∈[-1,1],记此函数的最大值为M(a),最小值为N(a),求M(a),N(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(5,-3),则$\overrightarrow{a}$•$\overrightarrow{b}$的值为(  )
A.-1B.7C.13D.11

查看答案和解析>>

同步练习册答案