精英家教网 > 高中数学 > 题目详情
在直角坐标系xOy中,点M到F1、F2的距离之和是4,点M的轨迹C与x轴的负半轴交于点A,不过点A的直线l:y=kx+b与轨迹C交于不同的两点P和Q.
(1)求轨迹C的方程;
(2)当时,求k与b的关系,并证明直线l过定点.
【答案】分析:(1)根据焦点坐标可求得c,根据M到两焦点距离和求得a,则b可求得,进而求得椭圆的方程.
(2)将直线方程代入曲线C的方程消去y,根据判别式大于0求得k和b的不等式关系,设出P(x1,y1),Q(x2,y2),根据韦达定理表示出x1+x2和x1x2,根据直线方程表示出y1•y2,推断出曲线C与x轴的负半轴交于点A(-2,0),进而可表示出根据求得(x1+2)(x2+2)+y1y2=0.整理求得k和b的关系式,最后进行验证求得k和b的关系.
解答:解:(1)∵点M到的距离之和是4,
∴M的轨迹C是长轴长为4,焦点在x轴上焦距为的椭圆,
其方程为
(2)将y=kx+b,代入曲线C的方程,
整理得(1+4k2)x2+8kbx+4b2-4=0,
因为直线l与曲线C交于不同的两点P和Q,
所以△=64k2b2-4(1+4k2)(4b2-4)=16(4k2-b2+1)>0.①
设P(x1,y1),Q(x2,y2),则.②
且y1•y2=(kx1+b)(kx2+b)=k2x1x2+kb(x1+x2)+b2.③
显然,曲线C与x轴的负半轴交于点A(-2,0),
所以
,得(x1+2)(x2+2)+y1y2=0.
将②、③代入上式,整理得12k2-16kb+5b2=0,
所以(2k-b)(6k-5b)=0,即b=2k或.经检验,都符合条件①.
当b=2k时,直线l的方程为y=kx+2k.
显然,此时直线l经过定点(-2,0)点.即直线l经过点A,与题意不符.
时,直线l的方程为.显然,此时直线l经过定点点,且不过点A.
综上,k与b的关系是:,且直线l经过定点点.
点评:本题主要考查了直线与圆锥曲线的综合问题.考查了学生综合分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足
MN
=
MF1
+
MF2
,直线l∥MN,且与C1交于A,B两点,若
OA
OB
=0
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知点P(2cosx+1,2cos2x+2)和点Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在直角坐标系xOy中,射线OA在第一象限,且与x轴的正半轴成定角60°,动点P在射线OA上运动,动点Q在y轴的正半轴上运动,△POQ的面积为2
3

(1)求线段PQ中点M的轨迹C的方程;
(2)R1,R2是曲线C上的动点,R1,R2到y轴的距离之和为1,设u为R1,R2到x轴的距离之积.问:是否存在最大的常数m,使u≥m恒成立?若存在,求出这个m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知圆M的方程为x2+y2-4xcosα-2ysinα+3cos2α=0(α为参数),直线l的参数方程为
x=tcosθ
y=1+tsinθ
(t
为参数)
(I)求圆M的圆心的轨迹C的参数方程,并说明它表示什么曲线;
(II)求直线l被轨迹C截得的最大弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案