【题目】将函数图象上的各点的横坐标缩短到原来的,纵坐标不变,再向左平移个单位,得到的图象,下列说法正确的是( )
A.点是函数图象的对称中心
B.函数在上单调递减
C.函数的图象与函数的图象相同
D.若,是函数的零点,则是的整数倍
科目:高中数学 来源: 题型:
【题目】如果两个方程的曲线经过若干次平移或对称变换后能够完全重合,则称这两个方程为“互为镜像方程对”,给出下列四对方程:
①与②与
③与④与
则“互为镜像方程对”的是( )
A.①②③B.①③④C.②③④D.①②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC中,角A,B,C所对应的分别为a,b,c,且(a+b)(sinA﹣sinB)=(c﹣b)sinC,若a=2,则△ABC的面积的最大值是( )
A.1B.C.2D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分,(1)小问7分,(2)小问5分)
设函数
(1)若在处取得极值,确定的值,并求此时曲线在点处的切线方程;
(2)若在上为减函数,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分,(1)小问7分,(2)小问5分)
设函数
(1)若在处取得极值,确定的值,并求此时曲线在点处的切线方程;
(2)若在上为减函数,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设O为坐标原点,动点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足.
(1)求点P的轨迹方程;
(2)设点在直线上,且.证明:过点P且垂直于OQ的直线过C的左焦点F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“垛积术”是我国古代数学的重要成就之一.南宋数学家杨辉在《详解九章算法》中记载了“方垛”的计算方法:“果子以垛,下方十四个,问计几何?术曰:下方加一,乘下方为平积.又加半为高,以乘下方为高积.如三而一.”意思是说,将果子以方垛的形式摆放(方垛即每层均为正方形,自下而上每层每边果子数依次递减1个,最上层为1个),最下层每边果子数为14个,问共有多少个果子?计算方法用算式表示为.利用“方垛”的计算方法,可计算最下层每边果子数为14个的“三角垛”(三角垛即每层均为正三角形,自下而上每层每边果子数依次递减1个,最上层为1个)共有果子数为( )
A.420个B.560个C.680个D.1015个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com