精英家教网 > 高中数学 > 题目详情

【题目】给定椭圆C:(),称圆心在原点O,半径为的圆是椭圆C的“卫星圆”.若椭圆C的离心率,点C上.

(1)求椭圆C的方程和其“卫星圆”方程;

(2)点P是椭圆C的“卫星圆”上的一个动点,过点P作直线,使得,与椭圆C都只有一个交点,且,分别交其“卫星圆”于点M,N,证明:弦长为定值.

【答案】(1),;(2)证明见解析.

【解析】

(1)根据题意列出再结合即可解出,从而得到椭圆C的方程和其“卫星圆”方程;

(2) 根据分类讨论,当有一条直线斜率不存在时(不妨假设无斜率),可知其方程为,这样可求出;当两条直线的斜率都存在时,设经过点与椭圆只有一个公共点的直线为,与椭圆方程联立,由可得,所以线段应为“卫星圆”的直径,即,故得证.

(1)由条件可得:

解得

所以椭圆的方程为

卫星圆的方程为

(2)①当中有一条无斜率时,不妨设无斜率,

因为与椭圆只有一个公共点,则其方程为

方程为时,此时卫星圆交于点

此时经过点且与椭圆只有一个公共点的直线是

,即

∴线段应为卫星圆的直径,

②当都有斜率时,设点,其中

设经过点与椭圆只有一个公共点的直线为

则,

消去y得到

所以,满足条件的两直线垂直.

∴线段应为卫星圆的直径,∴

综合①②知:因为经过点,又分别交“卫星圆”于点,且垂直,所以线段是“卫星圆”的直径,∴为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数的图象为C,如下结论中正确的是(

①图象C关于直线对称;②函数在区间内是增函数;

③图象C关于点对称;④由的图象向右平移个单位长度可以得到图象C

A.①③B.②③C.①②③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保障人民群众的身体健康,在预防新型冠状病毒期间,贵阳市市场监督管理局加强了对市场的监管力度,对生产口罩的某工厂利用随机数表对生产的个口罩进行抽样测试是否合格,先将个口罩进行编号,编号分别为;从中抽取个样本,如下提供随机数表的第行到第行:

若从表中第行第列开始向右依次读取个数据,则得到的第个样本编号为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设三角形的边长为不相等的整数,且最大边长为n,这些三角形的个数为an.

1)求数列{an}的通项公式;

2)在12100中任取三个不同的整数,求它们可以是一个三角形的三条边长的概率.

附:1+22+32+…+n21+23+33+…+n3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,平面.

1)求证:

2)若,直线与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,顶点在底面上的射影在棱上,的中点。

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值;

(Ⅲ)已知是平面内一点,点中点,且平面,求线段的长。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角中,角的对边分别为.

(1)求角的大小;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数,且.

1)若是奇函数,求的取值集合

2)当时,设的反函数,且的图象与的图象关于对称,求的取值集合

3)对于问题(1)(2)中的,当时,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·江苏高考)如图,在三棱锥ABCD中,ABADBCBD,平面ABD⊥平面BCD,点EF(EAD不重合)分别在棱ADBD上,且EFAD.

求证:(1)EF∥平面ABC

(2)ADAC.

查看答案和解析>>

同步练习册答案