精英家教网 > 高中数学 > 题目详情
11.已知抛物线y2=4px(p>0)与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为$\sqrt{2}$+1.

分析 根据抛物线和双曲线有相同的焦点求得p和c的关系,根据AF⊥x轴可判断出|AF|的值和A的坐标,代入双曲线方程与p=c,b2=c2-a2联立求得a和c的关系式,然后求得离心率e.

解答 解:∵抛物线的焦点和双曲线的焦点相同,
∴p=c
∵A是它们的一个公共点,且AF垂直x轴,
设A点的纵坐标大于0,
∴|AF|=2p,
∴A(p,2p),
∵点A在双曲线上,
∴$\frac{{p}^{2}}{{a}^{2}}$-$\frac{4{p}^{2}}{{b}^{2}}$=1,
∵p=c,b2=c2-a2
∴$\frac{{c}^{2}}{{a}^{2}}$-$\frac{4{c}^{2}}{{c}^{2}-{a}^{2}}$=1,
化简得:c4-6c2a2+a4=0,
∴e4-6e2+1=0,
∵e2>1,
∴e2=3+2$\sqrt{2}$
∴e=$\sqrt{2}$+1.
故答案为:$\sqrt{2}$+1.

点评 本题主要考查关于双曲线的离心率的问题,属于中档题,本题利用焦点三角形中的边角关系,得出a、c的关系,从而求出离心率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.求过直线x+3y+7=0与3x-2y-12=0的交点,且圆心为(-1,1)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列数值:
(1)若${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}=3$,求x+x-1的值;
(2)设lg2=a,lg3=b,计算log512的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.圆C1:x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0,当圆C1与圆C2内切时,m的取值是-2或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$f(x)=2x-\frac{9}{2-2x}(x>1)$的最小值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知椭圆E的中心为坐标原点,离心率为$\frac{\sqrt{3}}{2}$,E的右焦点与抛物线C:y=12x2的焦点重合,A,B是C的准线与E的两个交点,则|AB|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.集合M={x|x2-px+6=0},N={x|x2-x-p=0},若M∩N={2},则集合M∪N={-1,2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若抛物线y2=4x与直线x-y-1=0交于 A,B两点,则|AB|=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(n)=$\left\{\begin{array}{l}{n,n为奇数}\\{f(\frac{n}{2}),n为偶数}\end{array}\right.$,an=f(1)+f(2)+f(3)+…+f(2n),
(1)求a1,a2,a3的值
(2)设bn=an+1-an,写出bn与bn+1的递推关系,并求{bn}的通项公式.
(3)设数列{cn}的通项公式为cn=log2(3an-2)-10,n∈N*,数列{cn}的前n项和为Sn
问1000是否为数列{cn•Sn}中的项?若是,求出相应的项数,若不是,请说明理由.

查看答案和解析>>

同步练习册答案