精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=|3x-a|.
(Ⅰ)若不等式f(x)≤3的解集为{x|-$\frac{2}{3}$≤x≤$\frac{4}{3}$},求实数a的值.
(Ⅱ)在(Ⅰ)的条件下,令g(x)=f(x)+f(x+5),若不等式g(x)≥|m-1|对一切实数x恒成立,求实数m的取值范围.

分析 (Ⅰ)根据不等式的解和方程的根的关系可知:f(-$\frac{2}{3}$)=3,f($\frac{4}{3}$)=3,联立求解即可;
(Ⅱ)g(x)≥|m-1|对一切实数x恒成立,只需求出g(x)的最小值,g(x)=f(x)+f(x+5)=|3x-1|+|3x+14|,利用绝对值不等式的性质可得|3x-1|+|3x+14|≥|3x-1-3x-14|=15,求出a的范围.

解答 解:(Ⅰ)由题意可知:
f(-$\frac{2}{3}$)=3,f($\frac{4}{3}$)=3,
∴3=|a+2|,3=|4-a|,
∴a=1.
(Ⅱ)由a=1得,
f(x)=|3x-1|,f(x+5)=|3x+14|,
∴g(x)=f(x)+f(x+5)=|3x-1|+|3x+14|,
g(x)≥|m-1|对一切实数x恒成立,
∵|3x-1|+|3x+14|≥|3x-1-3x-14|=15,
∴15≥|m-1|,
∴-14≤m≤16.

点评 考查了不等式解集与方程的关系,恒成立问题的转换和绝对值定理的应用.属于基础题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某企业打算购买工作服和手套,市场价为每套工作服53元,每副手套3元,该企业联系了两家商店A和B,由于用货量大,这两家商店都给出了优惠条件:
商店A:买一赠一,买一套工作服,赠一副手套;
商店B:打折,按总价的95%收款.
该企业需要工作服75套,手套x副(x≥75),如果工作服与手套只能在一家购买,请你帮助老板选择在哪一家商店购买更省钱?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线l1:ax+y+3=0,l2:x+(2a-3)y=4,l1⊥l2,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{x+1,(-1≤x≤0)}\\{cosx,(0<x≤\frac{π}{2})}\end{array}\right.$,则${∫}_{-1}^{\frac{π}{2}}$f(x)dx=(  )
A.$\frac{1}{2}$B.1C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在四棱锥中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD,G、H分别为AD、BC中点.证明:
(1)AB⊥平面VAD;
(2)平面VGH⊥平面VBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列函数的导数:
(1)y=$\frac{{x}^{2}-1}{2-x}$;
(2)y=$\frac{sinx}{1+cosx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知曲线y=-$\frac{1}{3}$x3+2与曲线y=4x2-1在x=x0处的切线互相垂直,则x0的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A,B,C对边的边长分别是a,b,c,向量$\overrightarrow{p}$=(sinA+sinC,sinB),向量$\overrightarrow{q}$=(a-c,b-a),且满足$\overrightarrow{p}$⊥$\overrightarrow{q}$.
(1)求△ABC的内角C的值;
(2)若c=2,2sin2A+sin(2B+C)=sinC,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一辆价值30万元的汽车,按每年20%的折旧率折旧,设x年后汽车价值y万元,则y与x的函数解析式为(  )
A.y=30×0.2xB.y=30×0.8xC.y=30×1.2xD.y=20×0.3x

查看答案和解析>>

同步练习册答案