精英家教网 > 高中数学 > 题目详情

【题目】已知各项均为正数的无穷数列的前项和为,且满足(其中为常数), .数列满足.

(1)证明数列是等差数列,并求出的通项公式;

(2)若无穷等比数列满足:对任意的,数列中总存在两个不同的项 使得,求的公比.

【答案】(1) ;(2) .

【解析】试题分析:(1)仿写式子,两式相减得到,利用等差数列的定义和通项公式进行求解(2)构造数列,利用递减数列得到取值范围,利用数列是特殊的函数,利用导数研究其单调性,利用确定公比的取值.

试题解析:(1)方法一:因为①,

所以②,

由②-①得,

,又

,即.

中令得, ,即.

综上,对任意,都有

故数列是以为公差的等差数列.

,则.

方法二:因为,所以,又

则数列是以为首项, 为公差的等差数列,

因此,即.

时, ,又也符合上式,

.

故对任意,都有,即数列是以为公差的等差数列.

(2)令,则数列是递减数列,所以.

考察函数,因为,所以上递增,因此,从而 .

因为对任意,总存在数列中的两个不同项 ,使得,所以对任意的都有,明显.

,当时,

,不符合题意,舍去;

,当时,

,不符合题意,舍去;

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的值为11,则判断框中的条件可以是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个小组中随机抽取10名学生参加问卷调查.各组人数统计如下:

(1)从参加问卷调查的10名学生中随机抽取两名,求这两名学生来自同一个小组的概率;

(2)在参加问卷调查的10名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用表示抽得甲组学生的人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意实数,给出下列命题,其中真命题是(

A.”是“”的充要条件B.”是“”的充分条件

C.”是“”的必要条件D.是无理数”是“是无理数”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)已知函数fx=

1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.

2)求该函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱锥的侧棱和底面边长相等,在这个正四棱锥的条棱中任取两条,按下列方式定义随机变量的值:

若这两条棱所在的直线相交,则的值是这两条棱所在直线的夹角大小(弧度制);

若这两条棱所在的直线平行,则

若这两条棱所在的直线异面,则的值是这两条棱所在直线所成角的大小(弧度制).

(1)求的值;

(2)求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)当时,证明:对任意的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,直线相交于点,且它们的斜率之积为,记动点的轨迹为曲线.

(Ⅰ)求曲线的方程;

(Ⅱ)设直线与曲线交于两点,若直线斜率之积为,求证:直线过定点,并求定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 有极值,且函数的极值点是的极值点,其中是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值)

(1)求关于的函数关系式;

(2)当时,若函数的最小值为,证明: .

查看答案和解析>>

同步练习册答案