精英家教网 > 高中数学 > 题目详情

【题目】已知数列为等差数列,且

(Ⅰ)求数列的通项,及前项和

(Ⅱ)请你在数列的前4项中选出三项,组成公比的绝对值小于1的等比数列的前3项,并记数列的前n项和为.若对任意正整数,不等式恒成立,试求的最小值.

【答案】(Ⅰ);(Ⅱ)7

【解析】

(Ⅰ)根据已知条件,结合等差数列的基本量,即可求得首项和公差,再利用等差数列的通项公式和前n项和公式即可求得;

(Ⅱ)根据题意,求得数列的通项公式,即可由恒成立问题求得结果.

(Ⅰ)设数列的公差为

,得,即

解得:

数列的通项

项和

(Ⅱ)由得:

由题意知应取:

所以数列的公比

,∴

又由(Ⅰ)知,由此知,

时,取得最大值10

要使恒成立,只须使即可,所以有

是正整数知,的最小值为7

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,DEF分别为线段的中点.

1)证明:平面

2)证明:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙M过点,且与⊙N内切,设⊙M的圆心M的轨迹为曲线C

1)求曲线C的方程:

2)设直线l不经过点且与曲线C相交于PQ两点.若直线PB与直线QB的斜率之积为,判断直线l是否过定点,若过定点,求出此定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数上存在两个极值点.

(Ⅰ)求实数的取值范围;

(Ⅱ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆,称圆心在原点,半径为的圆是椭圆准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.

1)求椭圆的方程和其准圆方程;

2)点是椭圆准圆上的动点,过点作椭圆的切线准圆于点.

①当点准圆轴正半轴的交点时,求直线的方程并证明

②求证:线段的长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】港珠澳大桥是一座具有划时代意义的大桥.它连通了珠海香港澳门三地,大大缩短了三地的时空距离,盘活了珠江三角洲的经济,被誉为新的世界七大奇迹.截至201910238点,珠海公路口岸共验放出入境旅客超过1400万人次,日均客流量已经达到4万人次,验放出入境车辆超过70万辆次,2019年春节期间,客流再次大幅增长,日均客流达8万人次,单日客流量更是创下11.3万人次的最高纪录.

2019年从五月一日开始的连续100天客流量频率分布直方图如下

1)①同一组数据用该区间的中点值代替,根据频率分布直方图.估计客流量的平均数.

②求客流量的中位数.

2)设这100天中客流量超过5万人次的有天,从这天中任取两天,设为这两天中客流量超过7万人的天数.的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数,),在极坐标系(与平面直角坐标系取相同的单位长度,以坐标原点为极点,轴正半轴为极轴)中,曲线的极坐标方程为.

1)若可,试判断曲线的位置关系;

2)若曲线交于点两点,且,满足.的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲,乙两人进行抛硬币游戏,规定:每次抛币后,正面向上甲赢,否则乙赢.此时,两人正在游戏,且知甲再赢(常数)次就获胜,而乙要再赢(常数)次才获胜,其中一人获胜游戏就结束.设再进行次抛币,游戏结束.

1)若,求概率

2)若,求概率的最大值(用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD为直角梯形BC//A为正三角形,MPD中点.

1)证明:CM//平面PAB

2)若二面角P-AB-C的余弦值为,求直线AD与平面PBD所成角的正弦值.

查看答案和解析>>

同步练习册答案