精英家教网 > 高中数学 > 题目详情

如图,正方形ABCD所在平面与正方形ACEF所在平面垂直.
(1)求证:BD⊥平面ACEF;
(2)求直线DE与平面ACEF所成角的正弦值.

(1)证明:∵正方形ACEF,∴AF⊥AC,
又∵面ABCD⊥面ACEF,且面ABCD∩面ACEF=AC,
∴AF⊥平面ABCD,即AF⊥BD,
又AC⊥BD,AC∩AF=A,
∴BD⊥平面ACEF;
(2)解:设AC∩BD=O,并连接OE,

则由(1)知,∠OED为直线DE与平面ACEF所成角
设正方形ABCD的边长为2,则OC=OD=,CE=AC=2,DE==2
∴sin∠OED==
∴直线DE与平面ACEF所成角的正弦值为
分析:(1)利用面面垂直,证明AF⊥平面ABCD,进而利用线面垂直的判定,可得结论;
(2)设AC∩BD=O,并连接OE,则由(1)知,∠OED为直线DE与平面ACEF所成角,由此可得结论.
点评:本题考查线面垂直,考查线面角,掌握线面垂直的判定方法,正确找出线面角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=
2
,CE=EF=1.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、如图把正方形ABCD沿对角线BD折成直二面角,对于下面结论:
①AC⊥BD;
②CD⊥平面ABC;
③AB与BC成60°角;
④AB与平面BCD成45°角.
则其中正确的结论的序号为
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<
2
),则MN的长的最小值为 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD所在平面与等腰三角形EAD所在平面相交于AD,AE⊥平面CDE.
(I)求证:AB⊥平面ADE;
(II)(理)在线段BE上存在点M,使得直线AM与平面EAD所成角的正弦值为
6
3
,试确定点M的位置.
(文)若AD=2,求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州二模)如图,正方形ABCD与正方形CDEF所成的二面角为60°,则直线EC与直线AD所成的角的余弦值为
2
4
2
4

查看答案和解析>>

同步练习册答案