精英家教网 > 高中数学 > 题目详情

【题目】是平面内互不平行的三个向量,,有下列命题:

方程不可能有两个不同的实数解;

方程有实数解的充要条件是

方程有唯一的实数解

方程没有实数解.

其中真命题有 .(写出所有真命题的序号)

【答案】①④

【解析】

对于①、②,是关于向量的方程,将方程变形可得,由向量共线的条件分析①,也不能按照实数方程有解的条件来判断,对于③、④,是实系数方程,利用一元二次方程的根的判别式和数量积的性质,对题设中的四个选项依次进行判断,能够得到结果.

对于①:对方程变形可得,由平面向量基本定理分析可得最多有一解,故①正确;对于②:方程是关于向量的方程,不能按实数方程有解的条件来判断,故②不正确;对于③、④,方程中,,又由不平行,必有,则方程没有实数解,故③不正确而④正确故答案为:①④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设命题p:函数fx=lgax2-x+16a)的定义域为R;命题q:不等式3x-9xa对任意xR恒成立.

(1)如果p是真命题,求实数a的取值范围;

(2)如果命题pq为真命题且pq为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在矩形中,,点的中点,将沿折起到的位置,使二面角是直二面角.

1证明:

2求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线焦点的直线与抛物线交于两点,与圆交于两点,若有三条直线满足,则的取值范围为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(一),在直角梯形中,的中点,将沿折起,使点到达点的位置得到图(二),点为棱上的动点.

(1)当在何处时,平面平面,并证明;

(2)若,证明:点到平面的距离等于点到平面的距离,并求出该距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国北京世界园艺博览会期间,某工厂生产三种纪念品,每一种纪念品均有精品型和普通型两种,某一天产量如下表:(单位:个)

纪念品

纪念品

纪念品

精品型

普通型

现采用分层抽样的方法在这一天生产的纪念品中抽取个,其中种纪念品有个.

1)求的值;

)从种精品型纪念品中抽取个,其某种指标的数据分别如下:,把这个数据看作一个总体,其均值为,方差为,求的值;

3)用分层抽样的方法在种纪念品中抽取一个容量为的样木,从样本中任取个纪念品,求至少有个精品型纪念品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线⊥平面垂足为在矩形ABCD中,AD=1AB=2,若点A上移动,点B在平面上移动,则D两点间的最大距离为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点的距离和它到直线的距离的比是常数

求点M的轨迹C的方程;

N是圆E上位于第四象限的一点,过N作圆E的切线,与曲线C交于AB两点求证:的周长为10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,.

(1)求证:

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案