【题目】已知一次函数是上的减函数,,且.
(1)求;
(2)若在上单调递减,求实数m的取值范围;
(3)当时,有最大值1,求实数m的值.
科目:高中数学 来源: 题型:
【题目】已知函数,任取,若函数在区间上的最大值为,最小值为,记.
(1)求函数的最小正周期及对称轴方程;
(2)当时,求函数的解析式;
(3)设函数,,其中为参数,且满足关于的不等式有解,若对任意,存在,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)=|x﹣m|+|x|,m∈N*,存在实数x使f(x)<2成立.
(1)求实数m的值;
(2)若α≥1,β≥1,f(α)+f(β)=4,求证:≥3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题P:函数且|f(a)|<2,命题Q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=,
(1)分别求命题P、Q为真命题时的实数a的取值范围;
(2)当实数a取何范围时,命题P、Q中有且仅有一个为真命题;
(3)设P、Q皆为真时a的取值范围为集合S,,若RTS,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为.
(1)求直线的直角坐标方程与曲线的普通方程;
(2)若是曲线上的动点,为线段的中点,求点到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点与上、下顶点构成直角三角形,以椭圆的长轴长为直径的圆与直线相切.
(1)求椭圆的标准方程;
(2)设过椭圆右焦点且不平行于轴的动直线与椭圆相交于两点,探究在轴上是否存在定点,使得为定值?若存在,试求出定值和点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com