精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足条件:f(x+4)=f(x),当x∈[2,6]时,f(x)=(
12
)|x-m|+n
,且f(4)=31.
(1)求证:f(2)=f(6);(2)求m,n的值;(3)比较f(log3m)与f(log3n)的大小.
分析:(1)直接利用f(x+4)=f(x)将x=2代入即得:f(2)=f(6)
(2)由
f(4)=31
f(2)=f(6)
代入数据,解得
m=4
n=30
即可;
(3)先计算出log34+4的范围,再利用f(x+4)=f(x)进行化简求值,最后结合对数函数的单调性与特殊点即可比较大小.
解答:解:(1)证明:∵f(x+4)=f(x)∴f(2)=f(6)…(4分)
(2)解:由
f(4)=31
f(2)=f(6)
(
1
2
)|4-m+n=31
(
1
2
)|2-m+n=(
1
2
)|6-m+n
,解得
m=4
n=30
…(10分)
(3)解:∵log34∈(1,2)∴log34+4∈(5,6)
f(log34)=f(log34+4)=(
1
2
)|log34+4-4|+30=(
1
2
)log34+30
∵log330∈(3,4)
f(log330)=(
1
2
)|log330-4|+30=(
1
2
)4-log330+30=(
1
2
)log3
27
10
+30
log3
27
10
<log34

(
1
2
)log3
27
10
>(
1
2
)log34
(
1
2
)log3
27
10
+30>(
1
2
)log34+30

∴f(log34)<f(log330)即f(log3m)<f(log3n)…(16分)
点评:本小题主要考查函数单调性的应用、函数解析式的求解及常用方法、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案