精英家教网 > 高中数学 > 题目详情
4.已知等差数列{an}的前n项和为Sn
(1)若a1=1,S10=1OO,求{an}的通项公式;
(2)若Sn=n2-6n,求Sn-an的最小值.

分析 (1)由题意和求和公式可得公差d,可得通项公式;
(2)由an和Sn的关系可得an=2n-7,代入Sn-an由二次函数可得.

解答 解:(1)设等差数列{an}的公差为d,
∵a1=1,S10=1OO,
∴S10=10a1+$\frac{10×9}{2}$d=10+45d=1OO,
解得d=2,
∴{an}的通项公式an=1+2(n-1)=2n-1;
(2)∵Sn=n2-6n,∴a1=S1=-5,
当n≥2时,an=Sn-Sn-1=2n-7,
经验证当n=1时,上式也适合,
∴an=2n-7,
∴Sn-an=n2-6n-(2n-7)=n2-8n+7,
由二次函数可知当n=4时,上式取最小值-9

点评 本题考查等差数列的通项公式和求和公式,涉及通项和前n项和的关系以及二次函数的性质,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.曲线y=$\frac{1}{3}$x3-x2+2上有A,B两点,其中A(0,2),且曲线在A,B两点处的切线的倾斜角相差135°,则B点的坐标是(  )
A.(1,$\frac{4}{3}$)B.(2,$\frac{2}{3}$)C.(-1,$\frac{2}{3}$)D.(-2,-$\frac{14}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=$\frac{{x}^{2}-x+3}{x}$的值域为{y|y≥2$\sqrt{3}$-1,或y≤-2$\sqrt{3}$-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出下列函数:①f(x)=$\sqrt{-2{x}^{3}}$与g(x)=x$\sqrt{-2x}$;②f(x)=x0与g(x)=$\frac{1}{{x}^{0}}$;③f(x)=x2-2x-1与f(t)=t2-2t-1.其中表示同一函数的有②③(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知0<x<2π,且满足$\sqrt{\frac{1+cosx}{1-cosx}}$-$\sqrt{\frac{1-cosx}{1+cosx}}$=-$\frac{2}{tanx}$,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设A={x|x≤-1或1<x<2},B={x|$\frac{x-a}{x-b}$≤0},已知A∩B={-3<x≤-1},A∪B={x|x<2},则a+b的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若一次函数f(x)满足f(2)=1,f(3)=5,则f(x)的解析式为f(x)=4x-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知单调递增数列{an}的前n项和为Sn,满足Sn=$\frac{1}{2}$(a${\;}_{n}^{2}$+n).
(1)求数列{an}的通项公式;
(2)设cn=$\left\{\begin{array}{l}{\frac{1}{{a}_{n+1}^{2}-1}}&{n为奇数}\\{3×{2}^{{a}_{n-1}}+1}&{n为偶数}\end{array}\right.$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求3x2+$\frac{1}{2{x}^{2}}$的最小值.

查看答案和解析>>

同步练习册答案