【题目】设f(x)=
(1)求f(log2 )的值;
(2)求f(x)的最小值.
【答案】
(1)解:∵log2 <log22=1,
∴f(log2 )=
= =
(2)解:①当x≤1时,
f(x)=2﹣x在(﹣∞,1]上是减函数,
故f(x)≥f(1)= ;
②当x>1时,
f(x)= log3
=(log3x﹣1)(log3x﹣2)
=(log3x﹣1.5)2﹣ ,
故当log3x=1.5时,f(x)有最小值﹣ ;
综上所述,f(x)的最小值为﹣
【解析】(1)可判断出log2 <1,从而代入分段函数求函数的值,(2)在分段函数的两部分分别求函数的最小值,从而求分段函数的最小值即可.
【考点精析】关于本题考查的函数的最值及其几何意义和函数的值,需要了解利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值;函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为3万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)= ,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);
(2)甲厂生产多少台新产品时,可使盈利最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥中,底面为矩形, 底面, , , 为上一点, 为的中点.
(1)在图中作出平面与的交点,并指出点所在位置(不要求给出理由);
(2)求平面将四棱锥分成上下两部分的体积比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①函数y=|x|与函数y= 表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3(x﹣1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
⑤设函数f(x)是在区间[a.b]上图象连续的函数,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根.
其中正确命题的序号是 . (填上所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式f(x)= ﹣ (a∈R).
(1)写出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com