分析 根据集合A中元素x2+x+1恒大与0,而集合B中元素只有y+1>0,说明A中的-x,-x-1有可能与B中的-y,-$\frac{y}{2}$分别相等,分类讨论后有一种情况与题意不符,只有另外一种情况,求出此时x和y的值,则x2+y2的值可求.
解答 解:由A={x2+x+1,-x,-x-1},B={-y,-$\frac{y}{2}$,y+1},且A=B,
因为x2+x+1=${(x+\frac{1}{2})}^{2}$+$\frac{3}{4}$>0,且-y<0,-$\frac{y}{2}$<0.
所以只有x2+x+1=y+1.
若$\left\{\begin{array}{l}{-x=-y}\\{-x-1=-\frac{y}{2}}\end{array}\right.$,解得x=y=-2,与y∈R+不符.
若$\left\{\begin{array}{l}{-x=-\frac{y}{2}}\\{-x-1=-y}\end{array}\right.$,解得x=1,y=2;
代入集合A,B中验证满足集合元素的互异性.
此时x2+y2=12+22=5,
故答案为:5.
点评 本题考查了集合相等的概念,考查了集合中元素的特性,考查了分类讨论的数学思想方法,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | N=2 | B. | N=-2 | C. | N<-2 | D. | N>2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 一定小于零 | B. | 可能等于零 | C. | 一定大于零 | D. | 正负均有可能 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com