精英家教网 > 高中数学 > 题目详情
18.设数列{an}的前n项和为Sn,且a1=1,an+an+1=$\frac{1}{{2}^{n}}$(n=1,2,3,…),则S2n+1=(  )
A.$\frac{4}{3}$(1-$\frac{1}{{4}^{n}}$)B.$\frac{4}{3}$(1-$\frac{1}{{4}^{n+1}}$)C.$\frac{4}{3}$(1+$\frac{1}{{4}^{n}}$)D.$\frac{4}{3}$(1+$\frac{1}{{4}^{n+1}}$)

分析 a1=1,an+an+1=$\frac{1}{{2}^{n}}$(n=1,2,3,L),S2n+1=a1+(a2+a3)+(a4+a5)+…+(a2n+a2n+1)=1+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{2n}}$,即可得出.

解答 解:∵a1=1,an+an+1=$\frac{1}{{2}^{n}}$(n=1,2,3,…),
则S2n+1=a1+(a2+a3)+(a4+a5)+…+(a2n+a2n+1
=1+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{2n}}$,
=$\frac{1-(\frac{1}{4})^{n+1}}{1-\frac{1}{4}}$
=$\frac{4}{3}$$[1-(\frac{1}{4})^{n+1}]$.
故选:B.

点评 本题考查了等比数列的前n项和公式、“分组求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在三棱柱ABC-A1B1C1中,棱AC的中点为D
(1)求证:B1C∥平面A1BD;
(2)若平面ABC⊥平面ABB1A1,AA1=AB=$\sqrt{2}$BC=$\sqrt{2}$AC=2,∠A1AB=60°,求三棱锥D-A1BC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的两条渐近线为l1、l2.过椭圆C的右焦点F作直线l,使l丄l1.设直线l与椭圆C的两个交点由上至下依次为A,B,直线l与直线l2交于P点.
(Ⅰ)若l1与l2的夹角为60°,且双曲线的焦距为4,求椭圆C的方程:
(n)设$\overrightarrow{FA}$=λ$\overrightarrow{AP}$,当λ取得最大时,椭圆C的离心率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,AB=2AC=2,AD是BC边上的中线,记∠CAD=α,∠BAD=β.
(1)求sinα:sinβ;
(2)若tanα=sin∠BAC,求BC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在椭圆x2+8y2=8上求一点P,使P到直线l:x-y+4=0的距离最小,则P的坐标为(-$\frac{8}{3}$,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知A={x∈Z|-2<x<4},B={x|$\frac{2}{x-1}$≤1},则A∩B的元素个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x2-2mx-3m2|(m∈R).
(1)讨论函数f(x)的单调性;
(2)当m≥0时,记函数f(x)在区间[-1,1]上的最大值为φ(m),试求φ(m)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知小明参加了一种“接龙红包”的游戏,小明在红包里装了12元现金,然后发给朋友A,并给出金额所在区间[5,20],让A猜(所猜金额为整数元,下同),如果A猜中,A将获得红包里的金额;如果A未猜中,A要将当前的红包转发给朋友B,同时给出金额所在区间[8,17],让B猜,如果B猜中,A和B可以平分红包里的金额;如果B未猜中,B要将当前的红包转发给朋友C,同时给出金额所在区间[10,15],让C猜,如果C猜中,A、B和C可以平分红包里的金额;如果C未猜中,C要将当前的红包转发给朋友D,同时给出金额所在区间[12,13],让D猜,如果D猜中,A、B、C、和D可以平分红包里的金额;如果D未猜中,红包里的资金将退回至小明的账户.
(1)求A至少获得4元的概率;
(2)记B所获得的金额为ξ元,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求满足下列条件的双曲线的标准方程:
(1)焦点为F1(-$\sqrt{13}$,0),F2($\sqrt{13}$,0),a+b=5
(2)焦点在y轴上,焦距为8,且经过点M(2$\sqrt{2}$,-6)

查看答案和解析>>

同步练习册答案