精英家教网 > 高中数学 > 题目详情
对于任意实数a、b、c、d,命题:
①若a>b,c<0,则ac>bc;
②若a>b,则ac2>bc2
③若ac2<bc2,则a<b;
若a>b,则
1
a
1
b

⑤若a>b>0,c>d>0,则ac>bd.
其中真命题的个数是(  )
分析:根据不等式的性质分别进行判断即可.
解答:解:①根据不等式的性质可知若a>b,c<0,则ac>bc,∴①正确.
②当c=0时,ac2=bc2=0,∴②错误.
③若ac2>bc2,则c≠0,∴a<b成立,∴③正确.
④当a=1,b=-1时,满足a>b,但
1
a
1
b
不成立,∴④错误.
⑤若a>b>0,c>d>0,则ac>bd>0成立,∴⑤错误.
故正确的是①③.
故选:B.
点评:本题主要考查不等式的性质的应用,要求熟练掌握不等式的性质,以及不等式成立的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有以下四个命题:
①对于任意实数a、b、c,若a>b,c≠0,则ac>bc;
②设Sn 是等差数列{an}的前n项和,若a2+a6+a10为一个确定的常数,则S11也是一个确定的常数;
③关于x的不等式ax+b>0的解集为(-∞,1),则关于x的不等式
bx-ax+2
>0的解集为(-2,-1);
④对于任意实数a、b、c、d,若a>b>0,c>d则ac>bd.
其中正确命题的是
 
(把正确的答案题号填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在(0,+∞)上的函数f(x)满足以下条件:①对于任意实数a,b,都有f(a•b)=f(a)+f(b)-p,其中p是正实数;②f(2)=p-1;(2)③x>1时,总有f(x)<p
(1)求f(1)及f(
12
)
的值(写成关于p的表达式);
(2)求证:f(x)在(0,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果对于任意实数a,b(a<b),随机变量X满足P(a<X≤b)=
b
a
?μ,σ(x)dx
,称随机变量X服从正态分布,记为N(μ,σ2),若X~(0,1),P(X>1)=p,则
0
-1
?μ,σ(x)dx
=
1
2
-p
1
2
-p

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)设定义在(0,+∞)上的函数f(x)满足:①对于任意实数a,b都有f(ab)=f(a)+f(b)-5;②f(2)=4.则f(1)=
5
5
;若an=f(2n)(n∈N*),数列{an}的前项和为Sn,则Sn的最大值是
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ln(
x2+1
-x)
,则对于任意实数a,b(a+b≠0),
f(a)+f(b)
a+b
的值(  )

查看答案和解析>>

同步练习册答案