精英家教网 > 高中数学 > 题目详情
已知椭圆长轴、短轴及焦距之和为8,则长半轴长的最小值是______.
设长轴为2a,短轴为2b,焦距为2c,则2a+2b+2c=8,即a+b+c=4
∴(b+c)2=(4-a)2≤2(b2+c2)=2a2,即可得等式
(4-a)2≤2a2,即a2+8a-16≥0
解之得a≤-4-4
2
(舍)或a≥4
2
-4
故a的最小值为4
2
-4
故答案为:4
2
-4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1
x2
a2
+
y2
b2
=1
以抛物线y2=4
3
x
的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线x2=
1
mn
y
异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆长轴、短轴及焦距之和为8,则长半轴长的最小值是
 

查看答案和解析>>

科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:044

已知椭圆的中心在原点,坐标轴为对称轴,焦距为6,椭圆上一点P在直线l:x-y+9=0上运动,求长轴最短时点P的坐标及椭圆方程.

查看答案和解析>>

科目:高中数学 来源:高考数学一轮复习必备(第68课时):第八章 圆锥曲线方程-圆锥曲线的应用(1)(解析版) 题型:解答题

已知椭圆长轴、短轴及焦距之和为8,则长半轴长的最小值是   

查看答案和解析>>

同步练习册答案