精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=(2﹣a)lnx+ +2ax(a≤0).
(1)当a=0时,求f(x)的极值;
(2)当a<0时,讨论f(x)的单调性;
(3)若对任意的a∈(﹣3,﹣2),x1 , x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求实数m的取值范围.

【答案】
(1)解:依题意知f(x)的定义域为(0,+∞),

当a=0时,f(x)=2lnx+ ,f′(x)= =

令f′(x)=0,解得x=

当0<x< 时,f′(x)<0;

当x≥ 时,f′(x)>0

又∵f( )=2ln =2﹣2ln2

∴f(x)的极小值为2﹣2ln2,无极大值.


(2)解:f′(x)= +2a=

当a<﹣2时,﹣

令f′(x)<0 得 0<x<﹣ 或x>

令f′(x)>0 得﹣ <x<

当﹣2<a<0时,得﹣

令f′(x)<0 得 0<x< 或x>﹣

令f′(x)>0 得 <x<﹣

当a=﹣2时,f′(x)=﹣ ≤0,

综上所述,当a<﹣2时f(x),的递减区间为(0,﹣ )和( ,+∞),递增区间为(﹣ );

当a=﹣2时,f(x)在(0,+∞)单调递减;

当﹣2<a<0时,f(x)的递减区间为(0, )和(﹣ ,+∞),递增区间为( ,﹣ ).


(3)解:由(2)可知,当a∈(﹣3,﹣2)时,f(x)在区间[1,3]上单调递减,

当x=1时,f(x)取最大值;

当x=3时,f(x)取最小值;

|f(x1)﹣f(x2)|≤f(1)﹣f(3)=(1+2a)﹣[(2﹣a)ln3+ +6a]= ﹣4a+(a﹣2)ln3,

∵(m+ln3)a﹣ln3>|f(x1)﹣f(x2)|恒成立,

∴(m+ln3)a﹣2ln3> ﹣4a+(a﹣2)ln3

整理得ma> ﹣4a,

∵a<0,∴m< ﹣4恒成立,

∵﹣3<a<﹣2,∴﹣ ﹣4<﹣

∴m≤﹣


【解析】(1)当a=0时,f(x)=2lnx+ ,求导,令f′(x)=0,解方程,分析导数的变化情况,确定函数的极值;(2)当a<0时,求导,对导数因式分解,比较两根的大小,确定函数f(x)单调区间;(3)若对任意a∈(﹣3,﹣2)及x1 , x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求函数f(x)的最大值和最小值,解不等式,可求实数m的取值范围.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的极值与导数的理解,了解求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四棱锥中, 是平行四边形, ,点为棱的中点,点在棱上,且,平面交于点,则异面直线所成角的正切值为__________

【答案】

【解析】

延长的延长线与点Q,连接QEPA于点K,设QA=x

,得,则,所以.

的中点为M,连接EM,则

所以,则,所以AK=.

AD//BC得异面直线所成角即为,

则异面直线所成角的正切值为.

型】填空
束】
17

【题目】在极坐标系中,极点为,已知曲线 与曲线 交于不同的两点

(1)求的值;

(2)求过点且与直线平行的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f1(x)=;f2(x)=(x﹣1);f3(x)=loga(x+),(a>0,a≠1);f4(x)=x(),(x≠0),下面关于这四个函数奇偶性的判断正确的是(  )
A.都是偶函数
B.一个奇函数,一个偶函数,两个非奇非偶函数
C.一个奇函数,两个偶函数,一个非奇非偶函数
D.一个奇函数,三个偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy曲线C1C2的参数方程分别是 (t是参数) (φ为参数).以原点O为极点x轴的正半轴为极轴建立极坐标系.

(1)求曲线C1的普通方程和曲线C2的极坐标方程;

(2)射线OMθα与曲线C1的交点为OP与曲线C2的交点为OQ|OP|·|OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinωx﹣cosωx+m(ω>0,x∈R,m是常数)的图象上的一个最高点 ,且与点 最近的一个最低点是
(1)求函数f(x)的解析式及其单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,且 ac,求函数f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等腰梯形ABCD中,E、F分别是CD、AB的中点,CD=2,AB=4,AD=BC=.沿EF将梯形AFED折起,使得∠AFB=60°,如图.

(1)若G为FB的中点,求证:AG⊥平面BCEF;

(2)求二面角C-AB-F的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用[x]表示不超过x的最大整数,例如[3]=3,[1.2]=1,[﹣1.3]=﹣2.已知数列{an}满足a1=1,an+1=an2+an , 则[ + +…+ ]=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,棱AB的中点为P,若光线从点P出发,依次经三个侧面BCC1B1 , DCC1D1 , ADD1A1反射后,落到侧面ABB1A1(不包括边界),则入射光线PQ与侧面BCC1B1所成角的正切值的范围是(
A.(
B.( ,4)
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当为何值时,轴为曲线的切线;

(2)用表示中的最小值,设函数,讨论零点的个数.

查看答案和解析>>

同步练习册答案