【题目】已知函数f(x)=(2﹣a)lnx+ +2ax(a≤0).
(1)当a=0时,求f(x)的极值;
(2)当a<0时,讨论f(x)的单调性;
(3)若对任意的a∈(﹣3,﹣2),x1 , x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求实数m的取值范围.
【答案】
(1)解:依题意知f(x)的定义域为(0,+∞),
当a=0时,f(x)=2lnx+ ,f′(x)= ﹣ = ,
令f′(x)=0,解得x= ,
当0<x< 时,f′(x)<0;
当x≥ 时,f′(x)>0
又∵f( )=2ln =2﹣2ln2
∴f(x)的极小值为2﹣2ln2,无极大值.
(2)解:f′(x)= ﹣ +2a= ,
当a<﹣2时,﹣ < ,
令f′(x)<0 得 0<x<﹣ 或x> ,
令f′(x)>0 得﹣ <x< ;
当﹣2<a<0时,得﹣ > ,
令f′(x)<0 得 0<x< 或x>﹣ ,
令f′(x)>0 得 <x<﹣ ;
当a=﹣2时,f′(x)=﹣ ≤0,
综上所述,当a<﹣2时f(x),的递减区间为(0,﹣ )和( ,+∞),递增区间为(﹣ , );
当a=﹣2时,f(x)在(0,+∞)单调递减;
当﹣2<a<0时,f(x)的递减区间为(0, )和(﹣ ,+∞),递增区间为( ,﹣ ).
(3)解:由(2)可知,当a∈(﹣3,﹣2)时,f(x)在区间[1,3]上单调递减,
当x=1时,f(x)取最大值;
当x=3时,f(x)取最小值;
|f(x1)﹣f(x2)|≤f(1)﹣f(3)=(1+2a)﹣[(2﹣a)ln3+ +6a]= ﹣4a+(a﹣2)ln3,
∵(m+ln3)a﹣ln3>|f(x1)﹣f(x2)|恒成立,
∴(m+ln3)a﹣2ln3> ﹣4a+(a﹣2)ln3
整理得ma> ﹣4a,
∵a<0,∴m< ﹣4恒成立,
∵﹣3<a<﹣2,∴﹣ < ﹣4<﹣ ,
∴m≤﹣ .
【解析】(1)当a=0时,f(x)=2lnx+ ,求导,令f′(x)=0,解方程,分析导数的变化情况,确定函数的极值;(2)当a<0时,求导,对导数因式分解,比较两根的大小,确定函数f(x)单调区间;(3)若对任意a∈(﹣3,﹣2)及x1 , x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求函数f(x)的最大值和最小值,解不等式,可求实数m的取值范围.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的极值与导数的理解,了解求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.
科目:高中数学 来源: 题型:
【题目】四棱锥中, 面, 是平行四边形, , ,点为棱的中点,点在棱上,且,平面与交于点,则异面直线与所成角的正切值为__________.
【答案】
【解析】
延长交的延长线与点Q,连接QE交PA于点K,设QA=x,
由,得,则,所以.
取的中点为M,连接EM,则,
所以,则,所以AK=.
由AD//BC,得异面直线与所成角即为,
则异面直线与所成角的正切值为.
【题型】填空题
【结束】
17
【题目】在极坐标系中,极点为,已知曲线: 与曲线: 交于不同的两点, .
(1)求的值;
(2)求过点且与直线平行的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f1(x)=;f2(x)=(x﹣1);f3(x)=loga(x+),(a>0,a≠1);f4(x)=x(),(x≠0),下面关于这四个函数奇偶性的判断正确的是( )
A.都是偶函数
B.一个奇函数,一个偶函数,两个非奇非偶函数
C.一个奇函数,两个偶函数,一个非奇非偶函数
D.一个奇函数,三个偶函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1和C2的参数方程分别是 (t是参数)和 (φ为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1的普通方程和曲线C2的极坐标方程;
(2)射线OM:θ=α与曲线C1的交点为O,P,与曲线C2的交点为O,Q,求|OP|·|OQ|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= sinωx﹣cosωx+m(ω>0,x∈R,m是常数)的图象上的一个最高点 ,且与点 最近的一个最低点是 .
(1)求函数f(x)的解析式及其单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,且 ac,求函数f(A)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等腰梯形ABCD中,E、F分别是CD、AB的中点,CD=2,AB=4,AD=BC=.沿EF将梯形AFED折起,使得∠AFB=60°,如图.
(1)若G为FB的中点,求证:AG⊥平面BCEF;
(2)求二面角C-AB-F的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用[x]表示不超过x的最大整数,例如[3]=3,[1.2]=1,[﹣1.3]=﹣2.已知数列{an}满足a1=1,an+1=an2+an , 则[ + +…+ ]= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,棱AB的中点为P,若光线从点P出发,依次经三个侧面BCC1B1 , DCC1D1 , ADD1A1反射后,落到侧面ABB1A1(不包括边界),则入射光线PQ与侧面BCC1B1所成角的正切值的范围是( )
A.( , )
B.( ,4)
C.( , )
D.( , )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com