精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

I)若,求函数的单调区间;(其中是自然对数的底数)

II)设函数,当时,曲线有两个交点,求的取值范围.

【答案】I)增区间为,减区间为II

【解析】试题分析:(I)定义域,求得 利用 ,即可判定函数的单调区间;

II)联立两函数得 ,令

可得 ,根据分类讨论,即可求的取值范围。

试题解析:

I)定义域

时,

增区间为

减区间为

II)联立=

时,

得, 上单调递增

得, 上单调递减

由题意得

,则

单调递增,

单调递增,

时, 合题意

时,

得, 上单调递增

得, 上单调递减

由题意得

单调递减,

,则

单调递减

时, 合题意.

综上, 的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:

喜欢甜品

不喜欢甜品

合 计

南方学生

60

20

80

北方学生

10

10

20

合 计

70

30

100

⑴根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差

异”;

⑵已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机

抽取3人,求至多有1人喜欢甜品的概率.

0.100

0.050

0.010

2.706

3.841

6.635

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据统计,截至2016年底全国微信注册用户数量已经突破9.27亿.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从某市大学生中随机抽取100位同学进行了抽样调查,结果如下:

(1)求的值及样本中微信群个数超过12的概率;

(2)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过12的概率;

(3)以(1)中的频率作为概率,若从全市大学生中随机抽取3人,记表示抽到的是微信群个数超过12的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)讨论函数的单调性;

)若函数有两个极值点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择;

方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为.第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,获得奖金1000元;若未中奖,则所获奖金为0元.

方案乙:员工连续三次抽奖,每次中奖率均为,每次中奖均可获奖金400元.

(1)求某员工选择方案甲进行抽奖所获奖金(元)的分布列;

(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,过椭圆右焦点的直线交椭圆两点, 的中点,且直线的斜率为

求椭圆的方程;

设另一直线与椭圆交于两点,原点到直线的距离为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知点,曲线的参数方程为.以原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为

(Ⅰ)判断点与直线的位置关系并说明理由;

(Ⅱ)设直线与曲线的两个交点分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017唐山模拟】如图,ABCDA1B1C1D1为正方体,连接BD,AC1,B1D1 CD1,B1C,现有以下几个结论:①BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1与底面ABCD所成角的正切值是;④CB1与BD为异面直线,其中所有正确结论的序号为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于下列命题: ①若函数y=2x的定义域是{x|x≤0},则它的值域是{y|y≤1};
②若函数y= 的定义域是{x|x>2},则它的值域是{y|y≤ };
③若函数y=x2的值域是{y|0≤y≤4},则它的定义域一定是{x|﹣2≤x≤2};
④若函数y=log2x的值域是{y|y≤3},则它的定义域是{x|0<x≤8}.
其中不正确的命题的序号是 . (注:把你认为不正确的命题的序号都填上)

查看答案和解析>>

同步练习册答案