精英家教网 > 高中数学 > 题目详情
15.已知ξ的分布列如下:
ξ012
P$\frac{1}{2}$$\frac{1}{3}$$\frac{1}{6}$
并且η=3ξ+2,则方差Dη=(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.5

分析 由题意及随机变量ξ的分布列,可以先利用期望定义求出期望Eξ的值,最后根据方差的定义求出其方差即可.

解答 解:由于Eξ=0×$\frac{1}{2}$+1×$\frac{1}{3}$+2×$\frac{1}{6}$=$\frac{2}{3}$,
则Eξ2=0×$\frac{1}{2}$+1×$\frac{1}{3}$+4×$\frac{1}{6}$=1,
∴Dξ=Eξ2-(Eξ)2=$\frac{5}{9}$,
又由η=3ξ+2,Dη=32
故方差Dη=9×$\frac{5}{9}$=5
故选:D.

点评 本题主要考查了离散型随机变量的期望公式与方差公式,同时考查了分布列等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-1|+|x-2|+|x-3|+…+|x-20|,x∈N+且1≤x≤20.
(1)分别计算f(1),f(5),f(20)的值;
(2)当x为何值时,f(x)取得最小值?最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.从编号为1,2,…10的10个大小相同的球中任取4个,已知选出4号球的条件下,选出球的最大号码为6的概率为$\frac{1}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+bx+c(x∈R),且f(x)<0的解集为(-2,0).
(Ⅰ)求b,c的值;
(Ⅱ)若数列{an}的前n项和Sn=f(n),n∈N*,求数列{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x3+ax2+bx+c在x=0处取得极大值2,其图象在x=1处的切线与直线x-3y+2=0垂直.
(1)求f(x)的解析式;
(2)当x∈(-∞,$\sqrt{3}$]时,不等式xf′(x)≤m-6x2+9x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a=20.5,b=logπ3,c=log2sin$\frac{5π}{2}$,则(  )
A.b>c>aB.b>a>cC.a>b>cD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在边长为2的正三角形ABC中,M是BC边上的中点,$\overrightarrow{AN}$=2$\overrightarrow{NC}$,则$\overrightarrow{AM}$•$\overrightarrow{BN}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)已知x>1,求f(x)=x+$\frac{1}{x-1}$的最小值;
(2)已知0<x<$\frac{2}{5}$,求y=2x-5x2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知△ABC是腰长为2等腰直角三角形,D点是斜边AB的中点,点P在CD上,且$\overrightarrow{CP}=\frac{1}{2}\overrightarrow{PD}$,则$\overrightarrow{PA}•\overrightarrow{PB}$=(  )
A.-$\frac{3}{4}$B.-$\frac{10}{9}$C.0D.4

查看答案和解析>>

同步练习册答案