精英家教网 > 高中数学 > 题目详情
在x,y满足
x2
25
+
y2
16
=1的前提下,求z=x-2y的最大值和最小值.
考点:椭圆的简单性质
专题:圆锥曲线中的最值与范围问题
分析:首先,联立方程组
16x2+25y2=16×25
x=z+2y
,整理,得到89y2+64zy+16z2-16×25=0,然后根据△≥0,进行求解即可.
解答: 解:联立方程组
16x2+25y2=16×25
x=z+2y

∴89y2+64zy+16z2-16×25=0
∵△≥0,
∴(64z)2-64×89×(z2-25)≥0,
∴z2≤89,
∴-
89
≤z≤
89

∴z=x-2y的最大值
89
和最小值-
89
点评:本题重点考查了直线与椭圆的位置关系,属于中档题.考查运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽)(log29)•(log34)等于(  )
A、4
B、2
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的方程为x2-
y2
3
=1,直线m的方程为x=
1
2
,过双曲线的右焦点F的直线l与双曲线的右支相交于点P,Q两点,以PQ为直径的圆与直线m相交于M,N,记劣弧MN的长度为n,则
n
|PQ|
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-lnx,g(x)=
lnx
x
,a∈R
(1)当a=g′(1)时,讨论函数f(x)的单调区间
(2)当x∈[0,e]时,是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为某图形的正视图、侧视图及俯视图,请画出原图形.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
a
4
3
-8a
1
3
b
4b
2
3
+2•
3ab
+a
2
3
÷(1-2•
3
b
a
)×
3ab

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线l:y=2x+2,若l与椭圆x2+
y2
4
=1的交点为A、B,点P为椭圆上的动点,则使△PAB的面积为
2
-1的点P的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

平面α与平面β平行的条件可以是(  )
A、α内有无穷多条直线与β平行
B、α内的任何直线都与β平行
C、直线a?α,直线b?β,且a∥β,b∥α
D、直线a?α,直线a∥β

查看答案和解析>>

科目:高中数学 来源: 题型:

设α是第二象限角,且sinα=
3
5
,求sin(
π
6
-2α)的值.

查看答案和解析>>

同步练习册答案