分析 (1)当所放的球与四棱锥各面都相切时球的半径最大,即球心到各个面的距离均相等,联想到用体积法求解;
(2)(2)四棱锥可补成正方体,其直径为PB=$\sqrt{3}$a,故可求四棱锥外接球的半径.
解答 解:(1)设此球半径为R,最大的球应与四棱锥各个面都相切,
设球心为S,连SA、SB、SC、SD、SP,则把此四棱锥分为五个棱锥,设它们的高均为R
∵VP-ABCD=VS-PDA+VS-PDC+VS-ABCD+VS-PAB+VS-PBC
∴$\frac{1}{3}•a•a•a$=$\frac{1}{3}$R(2×$\frac{1}{2}•a•a$+2×$\frac{1}{2}•a•\sqrt{2}a$)
∴R=$\frac{2-\sqrt{2}}{2}$a.
∴球的最大半径为$\frac{2-\sqrt{2}}{2}$a
(2)四棱锥可补成正方体,其直径为PB=$\sqrt{3}$a,故四棱锥外接球的半径为$\frac{\sqrt{3}}{2}$a.
点评 本题主要考查棱锥的性质以及内切外接的相关知识点.“内切”和“外接”等有关问题,首先要弄清几何体之间的相互关系,主要是指特殊的点、线、面之间关系,然后把相关的元素放到这些关系中解决问题,
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对iPhone6的态度 | 计划购买的女员工 | 不计划购买的女员工 | 计划购买的男员工 | 不计划购买的男员工 |
频数 | 200 | 600 | 400 | 800 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com