精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}中的前n项和为Sn= ,又an=log2bn
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn

【答案】
(1)解:当n≥2时,

当n=1时, ,也适合上式

∴数列{an}的通项公式为an=n


(2)解:由 an=log2bn,得

则数列{bn}是公比为2的等比数列,

则数列{bn}的前n项和为:


【解析】(1)根据数列an=Sn﹣Sn1的关系即可求数列{an}的通项公式;(2)先求出数列{bn}通项公式,结合等比数列的前n项和公式进行求解即可.
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;

(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为,第二小组频数为.

(1)学生跳绳次数的中位数落在哪个小组内?

(2)第二小组的频率是多少?样本容量是多少?

(3)若次数在以上(含次)为良好,试估计该学校全体高一学生的良好率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线,设圆的半径为1且关于直线l对称.

(1)若圆心在直线上,过点作圆的切线,求切线的方程;

(2)点关于点的对称点为B若圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点且与圆相切,记动圆圆心的轨迹为曲线.

(1)求曲线的方程;

(2)过点且斜率不为零的直线交曲线 两点,在轴上是否存在定点,使得直线的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的各项均为正数,且a1a100+a3a98=8,则log2a1+log2a2+…+log2a100=(
A.10
B.50
C.100
D.1000

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(理科)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如表:(平均每天锻炼的时间单位:分钟)

将学生日均课外体育运动时间在上的学生评价为“课外体育达标”.

(1)请根据上述表格中的统计数据填写下面列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为 “课外体育达标”与性别有关?

(2)将上述调查所得到的频率视为概率.现在从该校高三学生中,抽取3名学生,记被抽取的3名学生中的“课外体育达标”学生人数为,若每次抽取的结果是相互独立的,求的数学期望.

独立性检验界值表:

(参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是各项为正数的等比数列,且a2=9,a4=81.
(1)求数列{an}的通项公式an
(2)若bn=log3an , 求证:数列{bn}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
①在△ABC中,若A<B,则sinA<sinB;
②在同一坐标系中,函数y=sinx与y=lgx的交点个数为2个;
③函数y=|tan2x|的最小正周期为
④存在实数x,使2sin(2x﹣ )﹣1= 成立;
其中正确的命题为(写出所有正确命题的序号).

查看答案和解析>>

同步练习册答案