精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面,底面为菱形,且分别为中点.

(1)求点到平面的距离;

(2)求证:平面平面

【答案】(1);(2)见解析.

【解析】【试题分析】(1)借助题设与已知条件运用等价转化的数学思想将点到面的距离转化为另一个点到平面的距离;(2)依据题设条件,先运用线面垂直的判定定理证明线面垂直,进而运用面面垂直的判定定理证明面面垂直。

(1)解:如图,

的中点,连接

因为底面为菱形,且

所以底面为正方形.

分别为中点,

,∴四边形是平行四边形,∴

平面平面,∴平面

∴点与点到平面的距离相等,即距离为

(2)证明:由(1)知

平面,∴

,∴平面

,又∵

平面,∴平面

平面,∴平面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入的数据如下表:

x

x1

x2

x3

ωx+φ

0

π

Asin(ωx+φ)

0

2

0

-2

0

(1)求x1,x2,x3的值及函数f(x)的表达式;

(2)将函数f(x)的图象向左平移π个单位,可得到函数g(x)的图象,求函数y=f(x)·g(x)在区间的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线为.

(1)求的解析式.

(2)若对任意,有成立,求实数的取值范围.

(3)证明:对任意成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x;小李后掷一枚骰子,向上的点数记为y,

(1)在直角坐标系xOy,(x,y)为坐标的点共有几个?试求点(x,y)落在直线x+y=7上的概率;

(2)规定:x+y10,则小王赢;x+y4,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线方程为

(1)求的解析式;

(2)求的单调区间;

(3)若函数在定义域内恒有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016~2017·郑州高一检测)过点M(1,2)的直线l与圆C:(x-3)2+(y-4)2=25交于AB两点,C为圆心,当∠ACB最小时,直线l的方程是 (  )

A. x-2y+3=0 B. 2xy-4=0

C. xy+1=0 D. xy-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{bn}中的b3、b4、b5.

(1)求数列{bn}的通项公式;

(2)数列{bn}的前n项和为Sn,求证:数列是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中:

①线性回归方程必过点

②在回归方程中,当变量增加一个单位时, 平均增加5个单位;

③在回归分析中,相关指数0.80的模型比相关指数0.98的模型拟合的效果要好;

④在回归直线中,变量时,变量的值一定是-7

其中假命题的个数是 ( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】厂为了对新研发的一种产品进行合理定价将该产品按事先拟定的价格进行试销得到如下数据

单价x/

8

8.2

8.4

8.6

8.8

9

销量y/

90

84

83

80

75

68

(1)求线性回归方程=x+其中=-20 =- .

(2)预计在今后的销售中销量与单价仍然服从(1)中的关系且该产品的成本是4/为使工厂获得最大利润该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

同步练习册答案