精英家教网 > 高中数学 > 题目详情

已知点N(2,)是函数y=Asin(x+)(A>0,>0)的图象的最高点,点N到相邻两个最低点的图象曲线与x轴交于A、B两点,其中B点坐标(6,0),求此函数的解析式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点(1,
1
3
)
是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列an的前n项和为f(n)-c,数列bn(bn>0)的首项为c,且前n项和Sn满足:Sn-Sn-1=
Sn
 + 
Sn-1
(n≥ 2)
.记数列{
1
bnbn+1
}
前n项和为Tn
(1)求数列an和bn的通项公式;
(2)若对任意正整数n,当m∈[-1,1]时,不等式t2-2mt+
1
2
Tn
恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下命题,其中正确命题序号为
(1)(3)(5)
(1)(3)(5)

(1)若函数y=f(x)为偶函数,则函数y=f (x-1)的图象关于直线x=1 对称;
(2)“x≠1”是“x2≠1”的充分不必要条件;
(3)函数y=2lg(x2-2)既是偶函数,又在区间[2,8]上是增函数;
(4)已知f′(x)是函数y=f(x)的导函数,若f′(x0)=0,则x0必为函数的极值点;
(5)某城市现有人口a万人,预计年平均增长率为p.那么该城市第十年年初的人口总数为a(1+p)9万人.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(1,
1
3
)
是函数f(x)=ax(a>0,且a≠1)的图象上一点.等比数列{an}的前n项和为f(n)-1.数列{bn}(bn>0)的首项为1,且前n项和sn满足sn-sn-1=
sn
+
sn_1
(n≥2)

(1)求数列{an}和{bn}的通项公式;
(2)若数列{
1
bnbn_1
}
的前n项和为Tn,问满足Tn
1000
2012
的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(,2)在幂函数yf(x)的图像上,点(- ) 在幂函数yg(x) 的图像上,

f(x)=g(x),则x=________.  

查看答案和解析>>

同步练习册答案