精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为F,直线与抛物线C相切于点P,过点P作抛物线C的割线PQ,割线PQ与抛物线C的另一交点为QAPQ的中点.Ay轴的垂线与y轴交于点H,与直线l相交于点NM为线段AN的中点.

1)求抛物线C的方程;

2)在x轴上是否存在一点T,使得当割线PQ变化时,总有为定值?若存在,求出该点的坐标;若不存在,请说明理由.

【答案】12)存在点,使得恒为定值1.

【解析】

1)联立直线与抛物线的方程,结合根的判别式可求出的值;

2)先算出点,设出点的坐标,算出的中点的坐标,得出点在抛物线上,利用抛物线定义可得为定值1

1)由,得

.

依题意,.

解得.

所以抛物线C的方程为.

2)由,代入①得,解得

代入切线l,所以点

,则,所以.

依题意,将,代入直线l

所以AN的中点为

,所以

所以AN的中点M在抛物线C.

由抛物线的定义可知,当T为抛物线的焦点时,

等于M到抛物线准线的距离,所以.

所以存在点,使得恒为定值1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线的右焦点到渐近线的距离为3.现有如下条件:①双曲线的离心率为 ②双曲线与椭圆共焦点; ③双曲线右支上的一点的距离之差是虚轴长的.

请从上述3个条件中任选一个,得到双曲线的方程为_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.,则的逆命题为真命题

B.命题的否定是

C.,则的必要不充分条件

D.函数的最小值为2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上顶点为,以为圆心椭圆的长半轴为半径的圆与轴的交点分别为

(1)求椭圆的标准方程;

(2)设不经过点的直线与椭圆交于两点,且,试探究直线是否过定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201971日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照可回收物有害垃圾湿垃圾干垃圾的分类标准进行分类,没有垃圾分类和未投放到指定垃圾桶内等会被罚款和行政处罚.若某上海居民提着厨房里产生的湿垃圾随意地投放到楼下的垃圾桶,若楼下分别放有可回收物有害垃圾湿垃圾干垃圾四个垃圾桶,则该居民会被罚款和行政处罚的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, ,点分别为的中点.

(1)证明: 平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC的对边分别为abc.已知a=3b2+c2=a2bc2,且∠BAD=90°,则△ABC的面积为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,已知抛物线y22pxp0)及点M20),动直线l过点M交抛物线于AB两点,当l垂直于x轴时,AB4.

1)求p的值;

2)若lx轴不垂直,设线段AB中点为C,直线l1经过点C且垂直于y轴,直线l2经过点M且垂直于直线l,记l1l2相交于点P,求证:点P在定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点作斜率为的直线交抛物线于两点.

1)若,求的面积;

2)过点分别作抛物线的两条切线,且直线与直线相交于点,问:点是否在某条定直线上?若在,求该定直线的方程;若不在,请说明理由.

查看答案和解析>>

同步练习册答案