精英家教网 > 高中数学 > 题目详情
已知函数=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是(  )

    A.-37

    B.-29

    C.-5

    D.-11

      

解析:f′(x)=6x2-12x=6(x2-2x),?

       由f′(x)=0得x=0或2.?

       ∵f(0)=m,f(2)=-8+m,f(-2)=-40+m,?

       显然f(0)>f(2)>f(-2).?

       ∴m=3.最小值为f(-2)=-37.?

       答案:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f (x)=2x3-3(2+a2)x2+6(1+a2)x+1(a∈R).
(Ⅰ)若函数f (x)在R上单调,求a的值;
(Ⅱ)若函数f (x)在区间[0,2]上的最大值是5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x3-3(a-1)x2+4x+6a(a∈R),g(x)=4x+6.
(1)若函数y=f(x)的切线斜率的最小值为1,求实数a的值;
(2)若两个函数图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

有以下命题:①若集合A={1,2},B={x|x⊆A},则A∈B;②二项式(2x-3y)5的展开式的各项的系数和为25;③已知函数f(x)=2x3-3(a-1)x2+6(a2-8)x+1在x=1处取得极值,则实数a的值是-2或3;④已知点P(x,y)是抛物线y2=-12x的准线与双曲线x2-y2=1的两条渐近线所围成的三角形区域(含边界)内的任意一点,则z=2x-y的最大值为9.其中正确命题的序号有
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•泸州一模)已知函数f(x)=
a
x
+x+(a-1)lnx+15a
,F(x)=-2x3+3(a+2)x2+6x-6a-4a2,其中a<0且a≠-1.
(Ⅰ) 当a=-2,求函数f(x)的单调递增区间;
(Ⅱ) 若x=1时,函数F(x)有极值,求函数F(x)图象的对称中心坐标;
(Ⅲ)设函数g(x)=
F(x)-6x2+6(a-1)x•ex,x≤1
e•f(x),                             x>1
(e是自然对数的底数),是否存在a使g(x)在[a,-a]上为减函数,若存在,求实数a的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x3-3x2+a的极大值为6.
(1)求a的值;
(2)当x∈[-2,2],且t∈[-1,1]时,f(x)≥kt-25恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案