精英家教网 > 高中数学 > 题目详情

设函数
(1)求函数的极大值;
(2)记的导函数为,若时,恒有成立,试确定实数的取值范围.

(1);(2) .

解析试题分析:(1)由导函数求得函数的单调区间,再找极大值;(2) 的导函数是一元二次函数,转化为一元二次函数在上的最值,再满足条件即可.
试题解析:(1)令,且
时,得;当时,得 
的单调递增区间为的单调递减区间为
故当时,有极大值,其极大值为       6分
(2)∵         7分

①当时,,∴在区间内单调递减
,且
∵恒有成立
,此时,         10分
②当时,,得
因为恒有成立,所以
 ,即,又
,     14分
综上可知,实数的取值范围 .     15分
考点:1.函数的极值;2.一元二次函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题


(Ⅰ)讨论函数的单调性;
(Ⅱ)若,证明:时,成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)讨论的单调性;
(Ⅱ)若恒成立,证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 ().
(Ⅰ)求的单调区间;
(Ⅱ)试通过研究函数)的单调性证明:当时,
(Ⅲ)证明:当,且均为正实数,  时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=alnx,a∈R.
(Ⅰ)当f(x)存在最小值时,求其最小值φ(a)的解析式;
(Ⅱ)对(Ⅰ)中的φ(a),
(ⅰ)当a∈(0,+∞)时,证明:φ(a)≤1;
(ⅱ)当a>0,b>0时,证明:φ′()≤≤φ′().

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围.
注:是自然对数的底数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且函数在点处的切线方程为.
(Ⅰ)求函数的解析式;
(Ⅱ)设点,当时,直线的斜率恒小于,试求实数的取值范围;
(Ⅲ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的极大值.
(Ⅱ)求证:存在,使
(Ⅲ)对于函数定义域内的任意实数x,若存在常数k,b,使得都成立,则称直线为函数的分界线.试探究函数是否存在“分界线”?若存在,请给予证明,并求出k,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 
(1)求的最小值
(2)由(1)推出的最小值C
(不必写出推理过程,只要求写出结果)
(3)在(2)的条件下,已知函数若对于任意的,恒有成立,求的取值范围.

查看答案和解析>>

同步练习册答案