精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2lnx+1的图象与直线y=2x-a恰好有一个交点,设g(x)=ex-x2+a,当x∈[1,2]时,不等式-m≤g(x)≤m2-4恒成立,则实数m的取值范围是(  )
A、(-∞,
e2-1
]
B、[
e2-1
,e]
C、[-e,
e2+1
]
D、[
e2+1
,+∞)
考点:函数恒成立问题
专题:导数的综合应用
分析:用导数求出曲线上某点切线方程,即可得到a的值,再利用导数求出函数g(x)=ex-x2+a,当x∈[1,2]时的最值,再根据不等式-m≤g(x)≤m2-4恒成立,求的m的范围
解答: 解:∵函数f(x)=2lnx+1的图象与直线y=2x-a恰好有一个交点,
∴直线y=2x-a与f(x)相切
设曲线的切点为P(x0,y0),
∵f′(x)=
2
x

∴f′(x0)=
2
x0
=2,
∴x0=1,
∴y0=2lnx0+1=1,
∴2-a=1,
∴a=1
∴g(x)=ex-x2+1,
∴g′(x)=ex-2x,x∈[1,2]
设h(x)=ex-2x,x∈[1,2]
∴h′(x)=ex-2>0在[1,2]恒成立,
∴h(x)=ex-2x,x∈[1,2]为增函数,
∴h(x)min=h(1)=e-2>0,
∴g′(x)>0在[1,2]恒成立,
∴g(x)=ex-x2+1在[1,2]为增函数,
∴g(1)≤g(x)≤g(2),
即e≤g(x)≤e2-3
∵当x∈[1,2]时,不等式-m≤g(x)≤m2-4恒成立
e≥-m
e2-3≤m2-4

解得m≥
e2+1

故选:D.
点评:本题考查了导数和函数的最值的关系,以及导数的集合意义,以及恒成立的问题,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是(  )
A、ρ=cosθ
B、ρcosθ=1
C、ρ=sinθ
D、ρsinθ=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-2x(e为自然对数的底数)
(1)求函数f(x)的单调区间
(2)若存在x∈[
1
2
,2]
使不等式f(x)<mx成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

当a∈[-1,1]时,f(x)=alg2x+4>0恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

从一堆苹果中任取5只,称得它们的质量如下(单位:克):125 124 121 123 127,则该样本标准差s=
 
 (克)(用数字作答).
注:样本数据x1,x2…xn的标准差s=
1
n
[(x1-
.
x
)2+(x2-
.
x
)2+…+(xn-
.
x
)2]
,其中
.
x
为平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的顶点A固定,点A的对边BC的长是2a,边BC上的高为b,边BC沿一条定直线移动,求△ABC外心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差是2,前n项和Sn=pn2+2n,n∈N*
(Ⅰ)求p的值及数列{an}的通项公式;
(Ⅱ)在等比数列{bn}中,b2=a2-2,b3=a3+2,数列{bn}前n项和是Tn,求证:数列{Tn+
1
2
}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

某班50名学生在一次百米跑测试中,成绩全部介于13秒与18秒之间,将测度结果按如下方式分成五组:第一组[13,14),第二组[14,15),…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)分别求该班成绩在[13,14),[17,18]上的学生人数;
(Ⅱ)如果每次从成绩在[13,14)∪[17,18]上的同学中随机抽取2人,并用m,n分别表示被抽到的两位同学的百米测试成绩,若随机抽取3次(每次抽后都放回),设事件“|m-n|>1”发生的次数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b)的右焦点F(c,0)的直线交双曲线于A、B两点,交y轴于点P,则有
|PA|
|AF|
-
|PB|
|BF|
为定值
2ac
b2
,类比双曲线的这一结论,在椭圆
x2
a2
+
y2
b2
=1(a>b>0)中,
|PA|
|AF|
+
|PB|
|BF|
也为定值,则这个定值为(  )
A、
2a2
b2
B、
2ac
b2
C、
2b2
a2
D、
2bc
a2

查看答案和解析>>

同步练习册答案