精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆过圆的圆心,且右焦点与抛物线的焦点重合.

(1)求椭圆的方程;

(2)过点作直线交椭圆两点,若,求直线的方程.

【答案】(1)

(2)

【解析】

(1)根据焦点与椭圆上的点,列方程求解即可.

(2)根据三角形的面积公式化简可得,再利用向量的方法可得,再分直线有无斜率的情况,联立直线与椭圆的方程,利用韦达定理代入化简向量的关系求得斜率即可.

解:(1)因为抛物线的焦点为,所以,

因为在椭圆上,所以,由,得,所以椭圆的方程为

(2)由得:,即,可得,

①当垂直轴时,,此时满足题意,所以此时直线的方程为;

②当不垂直轴时,设,直线的方程为,

消去,

所以,

代入可得:,

代入,得,

代入化简得:,

解得,

经检验满足题意,则直线的方程为

综上所述直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】经过多年的运作,双十一抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2014双十一网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在双十一的销售量p万件与促销费用x万元满足(其中a为正常数).已知生产该产品还需投入成本万元(不含促销费用),产品的销售价格定为

元/件,假定厂家的生产能力完全能满足市场的销售需求.

(1)将该产品的利润y万元表示为促销费用x万元的函数;

(2)促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)若动点到定点的距离与到定直线的距离之比为,求证:动点的轨迹是椭圆;

2)设(1)中的椭圆短轴的上顶点为,试找出一个以点为直角顶点的等腰直角三角形,并使得两点也在椭圆上,并求出的面积;

3)对于椭圆(常数),设椭圆短轴的上顶点为,试问:以点为直角顶点,且两点也在椭圆上的等腰直角三角形有几个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家电公司销售部门共有200位销售员,每位部门对每位销售员都有1400万元的年度销售任务,已知这200位销售员去年完成销售额都在区间(单位:百万元)内,现将其分成5组,第1组,第2组,第3组,第4组,第5组对应的区间分别为 ,绘制出频率分布直方图.

(1)求的值,并计算完成年度任务的人数;

(2)用分层抽样从这200位销售员中抽取容量为25的样本,求这5组分别应抽取的人数;

(3)现从(2)中完成年度任务的销售员中随机选取2位,奖励海南三亚三日游,求获得此奖励的2位销售员在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了更好地支持中小型企业的发展,某市决定对部分企业的税收进行适当的减免,某机构调查了当地的中小型企业年收入情况,并根据所得数据画出了样本的频率分布直方图,下面三个结论:

样本数据落在区间的频率为0.45

如果规定年收入在500万元以内的企业才能享受减免税政策,估计有55%的当地中小型企业能享受到减免税政策;

样本的中位数为480万元.

其中正确结论的个数为( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cos xC2y=sin (2x+),则下面结论正确的是( )

A. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆,定义椭圆C相关圆E:.若抛物线的焦点与椭圆C的右焦点重合,且椭圆C的短轴长与焦距相等.

1)求椭圆C及其相关圆E的方程;

2)过相关圆E上任意一点P作其切线l,若l 与椭圆交于A,B两点,求证:为定值(为坐标原点);

3)在(2)的条件下,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)试判断函数的单调性;

2)是否存在实数,使函数的极值大于?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(数学文卷·2017届重庆十一中高三12月月考第16题) 现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为 ,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______

查看答案和解析>>

同步练习册答案