精英家教网 > 高中数学 > 题目详情
8.f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^x},x≤0\\ f(x-4),x>0\end{array}$,则f(2013)=8.

分析 求出函数在x>0时的周期,然后求解函数值即可.

解答 解:f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^x},x≤0\\ f(x-4)x>0\end{array}$,x>0时,函数的周期为4,
f(2013)=f(504×4-3)=f(-3)=$(\frac{1}{2})^{-3}$=8.
故答案为:8.

点评 本题考查分段函数的应用,函数的周期的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知满足不等式组$\left\{\begin{array}{l}{{x}^{2}-x>0}\\{{x}^{2}+(3-a)x-3a<0}\end{array}\right.$的整数x只有-2和-1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=Asin(ωx+φ)的最大值为2,最小正周期为π,直线x=$\frac{π}{6}$是其图象的一条对称轴,求函数g(x)=f(x-$\frac{π}{12}$)-f(x+$\frac{π}{12}$)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)的定义域为(-1,1),值域为(0,3),求f(2x-1)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在极坐标系中,求适合下列条件的直线或圆的极坐标方程:
(1)过极点,倾斜角是$\frac{π}{3}$的直线;
(2)过点(2,$\frac{π}{3}$),并且和极轴垂直的直线;
(3)圆心在A(1,$\frac{π}{4}$),半径为1的圆;
(4)圆心在(a,$\frac{π}{2}$),半径为a的圆.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.f(x)=$\frac{1}{1+x}$,g(x)=x2-1,则f(2)=$\frac{1}{3}$,f(g(2))=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.f(cosx)=cos2x,那么f(sin150°)的值为 (  )
A.-1B.1C.$-\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对于实数a,b,定义运算“*”:a*b=$\left\{\begin{array}{l}{-{a}^{2}+2ab-1.a<b}\\{{b}^{2}-ab,a>b}\end{array}\right.$,若f(x)=(2x-1)*(x-1),且函数y=f(x)-m有三个零点x1,x2,x3,则x1•x2•x3的取值范围是(  )
A.(-$\frac{1}{4}$,0)B.(-$\frac{1}{8}$,0)C.(-$\frac{1}{16}$,0)D.(-$\frac{1}{32}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={1,2},在A中可重复的依次取出三个数a,b,c,则“以a,b,c为边恰好构成三角形”的概率是(  )
A.$\frac{1}{2}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案