精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆的离心率为轴被曲线截得的线段长等于的长半轴长。

1)求的方程;

2)设轴的交点为M,过坐标原点O的直线相交于点A,B,直线MA,MB分别与相交与D,E.

证明:

MAB,MDE的面积分别是.问:是否存在直线,使得=?请说明理由。

【答案】1

2见解析 满足条件的直线存在,且有两条,其方程分别为

【解析】1)由题意知,从而,又,解得

的方程分别为

2由题意知,直线的斜率存在,设为,则直线的方程为.

,则是上述方程的两个实根,于是

又点的坐标为,所以

,即

设直线的斜率为,则直线的方程为,由解得,则点的坐标为

又直线的斜率为,同理可得点B的坐标为.

于是

解得,则点的坐标为

又直线的斜率为,同理可得点的坐标

于是

因此

由题意知, 解得

又由点的坐标可知, ,所以

故满足条件的直线存在,且有两条,其方程分别为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定点,定直线,动点到点的距离比点的距离小1.

(1)求动点P的轨迹C的方程;

(2)过点的直线与(1)中轨迹C相交于两个不同的点M、N,若,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1F2分别为双曲线的左、右焦点,若双曲线左支上存在一点P,使得=8a,则双曲线的离心率的取值范围是__________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心坐标,直线被圆截得弦长为.

1)求圆的方程;

2)从圆外一点向圆引切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体 中, 分别为 的中点,点 是底面内一点,且 平面 ,则 的最大值是( )

A. B. 2 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),直线的参数程为为参数),设直线的交点为,当变化时点的轨迹为曲线.

(1)求出曲线的普通方程;

(2)以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,点为曲线的动点,求点到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中, 分别是 的中点, 平面,且.

1)证明: 平面

2)若 为等边三角形,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图所示:

(Ⅰ)估计该组数据的中位数、众数;

(Ⅱ)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布N(μ,210),μ近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P(50.5<Z<94);

(Ⅲ)在(Ⅱ)的条件下,有关部门为此次参加问卷调査的市民制定如下奖励方案:

(i)得分不低于μ可获赠2次随机话费,得分低于μ则只有1次;

(ii)每次赠送的随机话费和对应概率如下:

赠送话费(单元:元)

10

20

概率

现有一位市民要参加此次问卷调查,记X(单位元)为该市民参加.问卷调查获赠的话费,求X的分布列和数学期望.

若ZN(μ,σ2),则P(μ-σ<Z<μ+σ)= 0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知两点 动点满足线段的中垂线交线段.

(1)求点的轨迹的方程;

(2)过点的直线与轨迹相交于两点,设点直线的斜率分别为是否为定值?并证明你的结论.

查看答案和解析>>

同步练习册答案