精英家教网 > 高中数学 > 题目详情

【题目】1)求经过直线3x+4y-2=0与直线x-y+4=0的交点P,且垂直于直线x-2y-1=0的直线方程;

2)求过点P-13),并且在两坐标轴上的截距相等的直线方程.

【答案】12x+y+2=0;(23x+y=0x+y-2=0

【解析】

1)联立直线方程求出点的坐标,再求出所求直线的斜率,代入直线方程点斜式得答案;

2)当直线过原点时,直线方程为y=-3x;当直线不过原点时,设直线方程为x+y=a,把点的坐标代入求得a,则直线方程可求.

解:(1)联立,解得

∴两直线的焦点坐标为(-22),

直线x-2y-1=0斜率为,则所求直线的斜率为-2

∴直线方程为y-2=-2x+2),

2x+y+2=0

2)当直线过原点时,直线方程为y=-3x

当直线不过原点时,设直线方程为x+y=a,则-1+3=a,即a=2

是求直线方程为x+y=2

∴所求直线方程为3x+y=0x+y-2=0

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为创建全国文明城市,我市积极打造“绿城”的创建目标,使城市环境绿韵萦绕,使市民生活绿意盎然.有效增加城区绿化面积,提高城区绿化覆盖率,提升城市形象品位.林业部门推广种植甲、乙两种树苗,并对甲、乙两种树苗各抽测了10株树苗的高度(单位:厘米),数据如下面的茎叶图:

1)根据茎叶图求甲、乙两种树苗的平均高度;

2)根据茎叶图,计算甲、乙两种树苗的高度的方差,运用统计学知识分析比较甲、乙两种树苗高度整齐情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱的底面为菱形, 中点.

(1)求证: 平面

(2)若底面,且直线与平面所成线面角的正弦值为,求的长.

【答案】(1)证明见解析;(2)2.

【解析】试题分析:(1的中点,根据平几知识可得四边形是平行四边形,即得,再根据线面平行判定定理得结论,2根据条件建立空间直角坐标系,设立各点坐标,利用方程组解得平面一个法向量,根据向量数量积求向量夹角,再根据线面角与向量夹角互余关系列等式,解得的长.

试题解析:(1)证明:设的中点,连

因为,又所以

所以四边形是平行四边形,

所以

平面 平面

所以平面.

(2)因为是菱形,且

所以是等边三角形

中点,则

因为平面

所以

建立如图的空间直角坐标系,令

设平面的一个法向量为

,设直线与平面所成角为

解得,故线段的长为2.

型】解答
束】
20

【题目】椭圆:的左、右焦点分别为,若椭圆过点.

(1)求椭圆的方程;

(2)若为椭圆的左、右顶点, )为椭圆上一动点,设直线分别交直线 于点,判断线段为直径的圆是否经过定点,若是,求出该定点坐标;若不恒过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的一个焦点为,点在椭圆

(Ⅰ)求椭圆的方程与离心率;

(Ⅱ)设椭圆上不与点重合的两点 关于原点对称,直线 分别交轴于 两点求证:以为直径的圆被轴截得的弦长是定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y关于t的线性回归方程;

(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为菱形 平面 中点.

(1)求证: ∥平面

(2)求证:

(3)若为线段上的点,当三棱锥的体积为时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, , .将沿折起至,使得平面平面(如图2), 为线段上一点.

图1 图2

(Ⅰ)求证:

(Ⅱ)若为线段中点,求多面体与多面体的体积之比;

(Ⅲ)是否存在一点,使得平面?若存在,求的长.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥的底面为直角梯形,为正三角形.

(1)点为棱上一点,若平面,求实数的值;

(2)求点B到平面SAD的距离.

【答案】(1);(2)

【解析】试题分析:(1)由平面,可证,进而证得四边形为平行四边形,根据,可得

(2)利用等体积法可求点到平面的距离.

试题解析:((1)因为平面SDM,

平面ABCD,

平面SDM 平面ABCD=DM,

所以

因为,所以四边形BCDM为平行四边形,又,所以M为AB的中点.

因为

.

(2)因为

所以平面

又因为平面

所以平面平面

平面平面

在平面内过点直线于点,则平面

中,

因为,所以

又由题知

所以

由已知求得,所以

连接BD,则

又求得的面积为

所以由点B 到平面的距离为.

型】解答
束】
19

【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.

(1)请分别求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;

(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在 时,日平均派送量为单.

若将频率视为概率,回答下列问题:

①根据以上数据,设每名派送员的日薪为(单位:元),试分别求出甲、乙两种方案的日薪的分布列,数学期望及方差;

②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率为,且过点.

(1)求椭圆的方程;

(2)设为椭圆上任一点, 为其右焦点, 是椭圆的左、右顶点,点满足.

①证明: 为定值;

②设是直线上的任一点,直线分别另交椭圆两点,求的最小值.

查看答案和解析>>

同步练习册答案