精英家教网 > 高中数学 > 题目详情
13.已知幂函数f(x)的图象过点$(2,\frac{{\sqrt{2}}}{2})$,则f(x)是(  )
A.偶函数B.奇函数
C.定义域上的增函数D.定义域上的减函数

分析 设f(x)=xα,把点(2,$\frac{\sqrt{2}}{2}$)代入解出即可.

解答 解:设f(x)=xα
∵幂函数y=f(x)图象过点(2,$\frac{\sqrt{2}}{2}$),
∴$\frac{\sqrt{2}}{2}$${2}^{-\frac{1}{2}}$=2α
解得α=-$\frac{1}{2}$,
∴f(x)=${x}^{-\frac{1}{2}}$,
是定义域上的减函数,
故选:D.

点评 本题考查了幂函数的定义及其性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2sin(2ωx+$\frac{π}{3}$)(ω>0),最小正周期为π
(1)求ω的值;
(2)将函数f(x)的图象向左平移$\frac{π}{6}$个单位长度,再将所得图象各点的横坐标缩小为原来的$\frac{1}{2}$(纵坐标不变),得到函数g(x)的图象,求g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在矩形ABCD中,AB=1,AD=a,PA⊥平面ABCD,且PA=1,E,F分别为AD,PA中点,在BC上有且只有一个点Q,使得PQ⊥QD.
(1)求证:平面BEF∥平面PDQ;
(2)求二面角E-BF-Q的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=2,CD=4.
(1)求证:BE∥平面PAD;
(2)求证:平面PBC⊥平面PBD;
(3)设Q为棱PC上一点,$\overrightarrow{CQ}$=λ$\overrightarrow{CP}$,试确定λ的值使得二面角Q-BD-P为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$y=\frac{1}{x}$的图象与函数y=3sinπx(-1≤x≤1)的图象所有交点的横坐标与纵坐标的和等于(  )
A.4B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在空间中,已知$\overrightarrow{AB}$=(2,4,0),$\overrightarrow{DC}$=(-1,3,0),则异面直线AB与DC所成角θ的大小为(  )
A.45°B.90°C.120°D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列向量组中,能作为平面内所有向量的基底的是(  )
A.$\overrightarrow{a}$=(0,0),$\overrightarrow{b}$=(1,-2)B.$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(5,7)C.$\overrightarrow{a}$=(3,5),$\overrightarrow{b}$=(6,10)D.$\overrightarrow{a}$=(2,-3),$\overrightarrow{b}$=(4,-6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.
(Ⅰ) 求动圆圆心的轨迹C的方程;
(Ⅱ) 已知点B(-3,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知单位圆O与x轴正半轴相交于点M,点A,B在单位圆上,其中点A在第一象限,且∠AOB=$\frac{π}{2}$,记∠MOA=α,∠MOB=β.
(Ⅰ)若α=$\frac{π}{6}$,求点A,B的坐标;
(Ⅱ)若点A的坐标为($\frac{4}{5}$,m),求sinα-sinβ的值.

查看答案和解析>>

同步练习册答案