分析 (1)利用幂函数的单调性可得1<1.5${\;}^{\frac{1}{3}}$<1.7${\;}^{\frac{1}{3}}$;
(2)由于(-$\frac{\sqrt{2}}{2}$)${\;}^{-\frac{2}{3}}$=$(\sqrt{2})^{\frac{2}{3}}$,(-$\frac{10}{7}$)${\;}^{\frac{2}{3}}$=$(\frac{10}{7})^{\frac{2}{3}}$,而$\sqrt{2}$$<\frac{10}{7}$,利用幂函数的单调性可得1<$(\sqrt{2})^{\frac{2}{3}}$<$(\frac{10}{7})^{\frac{2}{3}}$,又1.1${\;}^{-\frac{4}{3}}$<1.即可得出.
(3)由于0<3.8${\;}^{-\frac{2}{3}}$<1,3.9${\;}^{\frac{2}{5}}$>1,(-1.8)${\;}^{\frac{3}{5}}$<0.即可得出.
(4)由于31.4<31.5<51.5.即可得出.
解答 解:(1)1<1.5${\;}^{\frac{1}{3}}$<1.7${\;}^{\frac{1}{3}}$;
(2)(-$\frac{\sqrt{2}}{2}$)${\;}^{-\frac{2}{3}}$=$(\sqrt{2})^{\frac{2}{3}}$,(-$\frac{10}{7}$)${\;}^{\frac{2}{3}}$=$(\frac{10}{7})^{\frac{2}{3}}$,
∵$\sqrt{2}$$<\frac{10}{7}$,∴1<$(\sqrt{2})^{\frac{2}{3}}$<$(\frac{10}{7})^{\frac{2}{3}}$,
∴(-$\frac{\sqrt{2}}{2}$)${\;}^{-\frac{2}{3}}$<(-$\frac{10}{7}$)${\;}^{\frac{2}{3}}$,
又1.1${\;}^{-\frac{4}{3}}$<1.
∴又1.1${\;}^{-\frac{4}{3}}$<(-$\frac{\sqrt{2}}{2}$)${\;}^{-\frac{2}{3}}$<(-$\frac{10}{7}$)${\;}^{\frac{2}{3}}$,
(3)∵0<3.8${\;}^{-\frac{2}{3}}$<1,3.9${\;}^{\frac{2}{5}}$>1,(-1.8)${\;}^{\frac{3}{5}}$<0.
∴3.9${\;}^{\frac{2}{5}}$>3.8${\;}^{-\frac{2}{3}}$>(-1.8)${\;}^{\frac{3}{5}}$;
(4)∵31.4<31.5<51.5.
∴31.4<51.5.
点评 本题考查了指数函数与幂函数的单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=-|x-1| | B. | y=|x2-4| | C. | y=-$\frac{3}{x}$ | D. | y=-x(x+2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com