精英家教网 > 高中数学 > 题目详情

【题目】已知(,且为常数).

(1)求的单调区间;

(2)若在区间内,存在时,使不等式成立,求的取值范围.

【答案】 (1) 时,单调递增区间为,单调递减区间为;时,函数单调递增区间为,单调递减区间为.(2)

【解析】

(1)先求导数,再根据正负分类讨论单调区间,(2)先根据单调性化简不等式,构造新函数,转化为研究新函数在区间上存在单调递减区间,利用导数研究新函数导数小于零有解,再利用变量分离法确定的取值范围.

(1)∵(为常数),∴

∴①若时,当;当时,,即时,函数单调递增区间为,单调递减区间为.

②若时,当;当时,,即时,函数单调递增区间为,单调递减区间为.

(2)由(1)知,在区间上单调递减,不妨设,则,∴不等式可化为,即,令,则在区间上存在单调递减区间,∴有解,即,∴有解,令,则,由,当时,单调递增;当时,单调递减,∴,故.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数fx),若存在x0R,使fx0=x0,则称x0fx)的一个不动点,已知fx=x2+ax+4[13]恒有两个不同的不动点,则实数a的取值范围______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运货卡车以每小时千米的速度匀速行驶千米,按交通法规则限制(单位:千米/小时),假设汽油的价格是每升元,而汽车每小时耗油升,司机工资是每小时元.

1)求这次行车总费用关于的表达式;

2)当为何值时,这次行车的总费用最低,并求出最低费用的值.(精确到

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产一种产品,质量测试分为:指标不小于90为一等品,不小于80小于90为二等品,小于80为三等品,每件一等品盈利50元,每件二等品盈利30元,每件三等品亏损10元,现对学徒工甲和正式工人乙生产的产品各100件的检测结果统计如下:

测试指标

5

15

35

35

7

3

3

7

20

40

20

10

根据上表统计得到甲、乙生产产品等级的频率分别估计为他们生产产品等级的概率.

1)求出乙生产三等品的概率;

2)求出甲生产一件产品,盈利不小于30元的概率;

3)若甲、乙一天生产产品分别为40件和30件,估计甲、乙两人一天共为企业创收多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数

1)当时,求函数的单调区间;

2)若函数在区间上有唯一零点,试求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A市积极倡导学生参与绿色环保活动,其中代号为环保卫士——12369的绿色环保活动小组对2014年1月——2014年12月(一年)内空气质量指数进行监测,下表是在这一年随机抽取的100天的统计结果:

指数API

[0,50]

(50,100]

(100,150]

(150,200]

(200,250]

(250,300]

>300

空气质量

轻微污染

轻度污染

中度污染

中重度污染

重度污染

天数

4

13

18

30

9

11

15

(1)若A市某企业每天由空气污染造成的经济损失P(单位:元)与空气质量指数(记为t)的关系

为:,在这一年内随机抽取一天,估计该天经济损失元的概率;

(2)若本次抽取的样本数据有30天是在供暖季节,其中有8天为重度污染,完成列联表,并判断是

否有的把握认为A市本年度空气重度污染与供暖有关?

非重度污染

重度污染

合计

供暖季

非供暖季节

合计

100

下面临界值表供参考

015

010

005

0025

0010

0005

0001

2072

2706

3841

p>5024

6635

7879

10828

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若如图所示的程序框图输出的S是126,则n条件为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济的发展,居民收入逐年增长.某地区2014年至2018年农村居民家庭人均纯收入(单位:千元)的数据如下表:

年份

2014

2015

2016

2017

2018

年份代号

1

2

3

4

5

人均纯收入

5

6

7

8

10

1)求关于的线性回归方程;

2)利用(1)中的回归方程,分析2014年至2018年该地区农村居民家庭人均纯收入的变化情况,并预测2020年该地区农村居民家庭人均纯收入约为多少千元?

附:回归直线的斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系下,已知圆O,直线l)与圆O相交于AB两点,且.

1)求直线l的方程;

2)若点EF分别是圆Ox轴的左、右两个交点,点D满足,点M是圆O上任意一点,点N在线段上,且存在常数使得,求点N到直线l距离的最小值.

查看答案和解析>>

同步练习册答案