精英家教网 > 高中数学 > 题目详情
对于函数f(x)=|sin2x|有下列命题:
①函数f(x)的最小正周期是
π
2
              ②函数f(x)是偶函数
③函数f(x)的图象关于直线x=
π
4
对称        ④函数f(x)在[
π
2
4
]
上为减函数
其中正确的命题序号是(  )
A、②③B、②④C、①③D、①②③
分析:根据三角函数的图象和性质分别进行判断.
解答:解:①∵f(x+
π
2
)=|sin2(x+
π
2
)|=|sin(2x+π)|=|sin2x|=f(x),∴函数f(x)的最小正周期是
π
2
 正确.
②∵f(-x)=|sin2(-x)|=|-sin2x|=|sin2x|=|sin2x|=f(x),∴函数f(x)是偶函数,正确.
③∵f(
π
4
)=|sin(2×
π
4
)|=|sin
π
2
|=1为函数的最大值,∴函数f(x)的图象关于直线x=
π
4
对称,正确.
④∵f(
π
2
)=|sin2×
π
2
|=|sinπ|=0,f(
4
)=|sin2×
4
|=|sin
2
|=1,
∴f(
π
2
)<f(
4
),∴不满足单调递减,∴④错误.
故正确是①②③.
故选:D.
点评:本题主要考查三角函数的图象和性质,要求熟练掌握三角函数的性质及其应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)f(x2);②f(x1•x2)=f(x1)+f(x2);
③(x1-x2)[f(x1)-f(x2)]<0;④f(
x1+x2
2
)<
f(x1)+f(x2)
2

当f(x)=2-x时,上述结论中正确结论的序号是
 
写出全部正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),定义域为D,若存在x0∈D使f(x0)=x0,则称(x0,x0)为f(x)的图象上的不动点. 由此,函数f(x)=
9x-5x+3
的图象上不动点的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)定义域中任意的x1,x2(x1≠x2)有如下结论:
①f(x1+x2)=f(x1)f(x2)②f(x1)f(x2)=f(x1)+f(x2)③
f(x1)-f(x2)
x1-x2
<0

f(
x1+x2
2
)<
f(x1)+f(x2)
2
,当f(x)=log
1
2
x
时,上述结论中正确的序号是
③④
③④
(写出全部正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为函数f(x)的不动点,已知f(x)=ax2+(b+1)x+(b-1)(a≠0)
(1)当a=1,b=-2求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异不动点,求a的取值范围;
(3)在(2)的条件下,令g(x)=
1
x+2
+loga 
1+x
1-x
,解关于x的不等式g[x(x-
1
2
)]<
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=x3cos3(x+
π
6
),下列说法正确的是(  )

查看答案和解析>>

同步练习册答案