精英家教网 > 高中数学 > 题目详情

【题目】【2017重庆二诊】已知函数

(1)分别求函数在区间上的极值;

(2)求证:对任意

【答案】(上有极小值,无极大值; 上有极大值,无极小值;()见解析.

【解析】()由题意,利用导数进行求解,首先求出函数极值点,再判断极值点两侧的单调性,从而得出是否为极大值点,还是极小值点,问题即可得解;()由()知,可将分为两段进行证明,在区间上可比较两个函数的极小值与极大值即,在区间上可考虑将两函数作差构造新函数,再通过判断新函数的单调性和最值,从而问题可得证.

试题解析:(

上递减,在上递增,

上有极小值,无极大值;

上递增,在上递减,

上有极大值,无极小值;

)由()知,当时, ,故

时, ,令,则

上递增,在上递减,

综上,对任意

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆Γ: + =1(a>b>0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O为坐标原点:

(1)求椭圆Г的方程:
(2)设点A在椭圆Г上,点B在直线y=2上,且OA⊥OB,求证: + 为定值:
(3)设点C在Γ上运动,OC⊥OD,且点O到直线CD距离为常数d(0<d<2),求动点D的轨迹方程:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,AB=PA=1,AD= ,F是PB中点,E为BC上一点.

(1)求证:AF⊥平面PBC;
(2)当BE为何值时,二面角C﹣PE﹣D为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017山西孝义考前热身】已知函数 (是常数),

(1)求函数的单调区间;

(2)当时,函数有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,点M是AB的中点,则直线DB1与MC所成角的余弦值为(
A.﹣
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中 是自然对数的底数.

(Ⅰ)若上的增函数,求的取值范围;

(Ⅱ)若,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC=120°,AC=3,△ABC的面积等于 ,D为边长BC上一点.

(1)求BC的长;
(2)当AD= 时,求cos∠CAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

ABC三个内角A、B、C所对的边分别为a,b,c. 已知C=,acosA=bcosB.

(1)求角A的大小;

(2)如图,在ABC的外角ACD内取一点P使得PC=2.过点P分别作直线CA、CD的垂线PM、PN,垂足分别是M、N.设PCA=α,求PM+PN的最大值及此时α的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分为16已知函数

1,求函数的极值,并指出极大值还是极小值;

2,求函数上的最值;

3,求证:在区间上,函数的图象在的图象下方.

查看答案和解析>>

同步练习册答案