精英家教网 > 高中数学 > 题目详情

【题目】为了推进课堂改革,提高课堂效率,银川一中引进了平板教学,开始推进智慧课堂改革.学校教务处为了了解我校高二年级同学平板使用情况,从高二年级923名同学中抽取50名同学进行调查.先用简单随机抽样从923人中剔除23人,剩下的900人再按系统抽样方法抽取50人,则在这923人中,每个人被抽取的可能性 ( )

A.都相等,且为B.不全相等C.都相等,且为D.都不相等

【答案】C

【解析】

系统抽样方法是一个等可能的抽样,故每个个体被抽到的概率都是相等的,结合概率的定义,即可判断每个个体被抽取的概率。

因为在系统抽样中,若所给的总体个数不能被样本容量整除,则要先剔除几个个体,然后再分组,在剔除过程中,每个个体被剔除的概率相等,

所以每个个体被抽到包括两个过程;一是被剔除,二是被选中,这两个过程是相互独立的,

所以每人入选的概率

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给定平面上的点集中任三点均不共线。将中所有的点任意分成83组,使得每组至少有3个点,且每点恰好属于一组,然后将在同一组的任两点用一条线段相连,不在同一组的两点不连线段,这样得到一个图案。不同的分组方式得到不同的图案。将图案中所含的以中的点为顶点的三角形的个数记为

(1)求的最小值

(2)设是使的一个图案,若将中的线段(指以的点为端点的线段)用4种颜色染色,每条线段恰好染一种颜色。证明存在一个染色方案,使染色后不含以的点为顶点的三边颜色相同的三角形。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的各棱长均为2,侧面 底面,侧棱与底面所成的角为

(Ⅰ)求直线与底面所成的角;

(Ⅱ)在线段上是否存在点,使得平面平面?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在处的切线方程为

(1),证明:

(2)若方程有两个实数根,且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将三个数给予适当的编排,分别取常用对数后成公差为1的等差数列,那么,此时______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆经过伸缩变换,后得到曲线以坐标原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线l的极坐标方程为

求曲线的直角坐标方程及直线l的直角坐标方程;

上求一点M,使点M到直线l的距离最小,并求出最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“双十一”期间,某淘宝店主对其商品的上架时间(小时)和销售量(件)的关系作了统计,得到了如下数据并研究.

上架时间

2

4

6

8

10

12

销售量

64

138

205

285

360

430

(1)求表中销售量的平均数和中位数;

(2)① 作出散点图,并判断变量是否线性相关?若研究的方案是先根据前5组数据求线性回归方程,再利用第6组数据进行检验,求线性回归方程

②若根据①中线性回归方程得到商品上架12小时的销售量的预测值与检测值不超过3件,则认为得到的线性回归方程是理想的,试问:①中的线性回归方程是否理想.

附:线性回归方程中, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保护环境,某工厂在政府部门的支持下,进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y(万元)与处理量x(吨)之间的函数关系可近似地表示为:,且每处理一吨二氧化碳可得价值为20万元的某种化工产品.

(1)当时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?

(2)当处理量为多少吨时,每吨的平均处理成本最少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】)计算:

①若是椭圆长轴的两个端点,,则______

②若是椭圆长轴的两个端点,,则______

③若是椭圆长轴的两个端点,,则______

)观察①②③,由此可得到:若是椭圆长轴的两个端点,为椭圆上任意一点,则?并证明你的结论.

查看答案和解析>>

同步练习册答案