精英家教网 > 高中数学 > 题目详情
9.在△ABC中,sinA+cosA=$\frac{\sqrt{2}}{2}$.
(1)求sinAcosA
(2)求sinA-cosA的值.

分析 △ABC中,根据sinA+cosA=$\frac{\sqrt{2}}{2}$,平方求得sinAcosA的值;再根据sinA-cosA=$\sqrt{{(sinA-cosA)}^{2}}$,计算求的结果.

解答 解:(1)△ABC中,∵sinA+cosA=$\frac{\sqrt{2}}{2}$,平方可得1+2sinAcosA=$\frac{1}{2}$,求得sinAcosA=-$\frac{1}{4}$.
(2)sinA-cosA=$\sqrt{{(sinA-cosA)}^{2}}$=$\sqrt{1-(-\frac{1}{2})}$=$\frac{\sqrt{6}}{2}$.

点评 本题主要同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若在△ABC中,∠A=60°,b=1,S△ABC=$\frac{{\sqrt{3}}}{2}$,则△ABC外接圆的半径R=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列函数的最大值
(1)y=x(1-2x)(0<x<$\frac{1}{2}$);
(2)y=x$\sqrt{3{-x}^{2}}$(0<x<$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列函数的值域;
(1)y=cos(x+$\frac{π}{6}$),x∈[0,$\frac{π}{2}$];
(2)y=cos2x-4cosx+5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|-1≤x<2},B={x|y=$\sqrt{2x+1}$+$\sqrt{3-x}$},求:①A∩B,②A∪B,③(∁RA)∩(∁RB)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若3<3x<27,则满足条件的x取值范围是(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知y=f(x)是奇函数,且满足f(x+2)+3f(-x)=0,当x∈[0,2]时,f(x)=x2-2x,则当x∈[-4,-2]时,f(x)的最小值为-$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设角x的终边不在坐标轴上,求函数y=$\frac{sinx}{|sinx|}$+$\frac{cosx}{|cosx|}$+$\frac{tanx}{|tanx|}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知A={x|x2-3x+2=0},B={x|$\frac{2x+3}{5}$≥$\frac{x-1}{2}$+1},求A∩B并写出A∩B的所有子集.

查看答案和解析>>

同步练习册答案