精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若曲线在点处与直线相切,求的值;

(2)若曲线与直线有两个不同交点,求的取值范围.

【答案】(1)见解析(2)见解析

【解析】

试题分析:1)若曲线在点处与直线相切,则,进而可得的值;(2)当时,曲线与直线最多只有一个交点;若曲线与直线y=b 有两个不同的交点,则b>1.

试题解析:解:由,得

(1)因为曲线在点处与直线相切,

所以,解得

(2)令,得的情况如下:

0

-

0

+

1

所以函数在区间上单调递减,在区间上单调递增,的最小值,当时,曲线与直线最多只有一个交点;

时,

所以存在,使得

由于函数在区间上均单调,所以当时曲线与直线有且仅有两个不同交点.

综上可知,如果曲线与直线有两个不同交点,那么的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆,过椭圆右顶点和上顶点的直线与圆相切.

(1)求椭圆的方程;

(2)设是椭圆的上顶点,过点分别作直线交椭圆两点,设这两条直线的斜率分别为,且,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,设倾斜角为的直线为参数与曲线为参数相交于不同的两点

1,求线段中点的坐标;

2,其中,求直线的斜率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴, 建立平面直角坐标系,在平面直角坐标系中, 直线经过点,倾斜角

1写出曲线直角坐标方程和直线的参数方程;

2与曲线相交于两点, 的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校高三上学期期末数学考试成绩中,随机抽取了名学生的成绩得到频率分布直方图如下:

(1)若用分层抽样的方法从分数在的学生中共抽取人,该人中成绩在的有几人?

(2)在(1)中抽取的人中,随机抽取人,求分数在人的概率.

(3)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.

(Ⅰ)求分数在[50,60)的频率及全班人数;

(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;

(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),在以原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1的普通方程和的倾斜角;

2)设点交于两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1处取得极小值的值

2上恒成立的取值范围

3求证:当

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:

他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是

A. 289 B. 1 024 C. 1 225 D. 1 378

查看答案和解析>>

同步练习册答案