精英家教网 > 高中数学 > 题目详情

【题目】设数列共有项,记该数列前中的最大项为,该数列后中的最小项为123.

1)若数列的通项公式为,求数列的通项公式;

2)若数列是单调数列,且满足,求数列的通项公式;

3)试构造一个数列,满足,其中是公差不为零的等差数列,是等比数列,使得对于任意给定的正整数,数列都是单调递增的,并说明理由.

【答案】1;(2;(3)见解析.

【解析】

1)由单调递增,可得,即可得到

2)由题意可得,即,又因为23,所以单调递增,可得是公差为2的等差数列,进而得到所求通项公式;

3)构造,其中,运用新定义即可得证.

解:(1)因为单调递增,

所以

所以

2)根据题意可知,

因为,所以

可得,即

又因为23,所以单调递增,

,所以,即

所以是公差为2的等差数列,

3)构造,其中

下证数列满足题意.

证明:因为,所以数列单调递增,

所以

所以

因为

所以数列单调递增,满足题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》、《好玩的数学》、《故事中的数学》等书,题材广泛、妙趣横生,深受广大读者喜爱.下面我们一起来看《好玩的数学》中谈老的一篇文章《五分钟内挑出埃及分数》:文章首先告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).如用两个埃及分数的和表示.100个埃及分数中挑出不同的3个,使得它们的和为1,这三个分数是________.(按照从大到小的顺序排列)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知数列满足:,,其中为实数,为正整数.

)对任意实数,证明:数列不是等比数列;

)证明:当时,数列是等比数列;

)设为实常数),为数列的前项和.是否存在实数,使得对任意正整数,都有?若存在,求的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在直角坐标系中,设椭圆的左右两个焦点分别为.过右焦点轴垂直的直线与椭圆C相交,其中一个交点为.

1)求椭圆C的方程;

2)设椭圆C的一个顶点为,求点M到直线的距离;

3)过中点的直线交椭圆于PQ两点,求长的最大值以及相应的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如题所示:扇形ABC是一块半径为2千米,圆心角为60°的风景区,P点在弧BC上,现欲在风景区中规划三条三条商业街道PQQRRP,要求街道PQAB垂直,街道PRAC垂直,直线PQ表示第三条街道。

(1)如果P位于弧BC的中点,求三条街道的总长度;

(2)由于环境的原因,三条街道PQPRQR每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过点的直线与椭圆交于两点,延长交椭圆于点的周长为8.

(1)求的离心率及方程;

(2)试问:是否存在定点,使得为定值?若存在,求;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(αβ),函数

(1)证明f(x)在区间(α,β)上是增函数;

(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线的焦点,直线与抛物线相切于点,连接交抛物线于另一点,过点的垂线交抛物线于另一点.

1)若,求直线的方程;

2)求三角形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面.

(Ⅰ)求证:平面

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)若二面角的余弦值为,求线段的长.

查看答案和解析>>

同步练习册答案