精英家教网 > 高中数学 > 题目详情

【题目】已知圆C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圆C与直线l:x+2y﹣4=0相交于M,N两点,且|MN|= ,求m的值;
(2)在(1)条件下,是否存在直线l:x﹣2y+c=0,使得圆上有四点到直线l的距离为 ,若存在,求出c的范围,若不存在,说明理由.

【答案】
(1)解:圆的方程化为(x﹣1)2+(y﹣2)2=5﹣m,

圆心 C(1,2),半径

则圆心C(1,2)到直线l:x+2y﹣4=0的距离为:

由于 ,则

,解得m=4.


(2)假设存在直线l:x﹣2y+c=0,

使得圆上有四点到直线l的距离为

由于圆心 C(1,2),半径r=1,

则圆心C(1,2)到直线l:x﹣2y+c=0的距离为:

解得


【解析】(1)由圆与直线相交于M,N两点,圆心到直线的距离令为d,构照直角三角形即可求出m。
(2)若存在直线l,使得圆上有四点到直线l的距离为,则圆心到直线的距离即可求出答案。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,它满足条件,数列满足.

(1)求数列的通项公式;

(2)若数列是一个单调递增数列,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是(  )
A.若p∨q为真命题,则p∧q为真命题
B.“x=5”是“x2﹣4x﹣5=0”的充分不必要条件
C.命题“若x<﹣1,则x2﹣2x﹣3>0”的否定为:“若x≥﹣1,则x2﹣2x﹣3≤0”
D.已知命题 p:x∈R,x2+x﹣1<0,则p:x∈R,x2+x﹣1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的角所对的边份别为,且

1求角的大小;

2,求的周长的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前n项和为Sn=a2n+b,且a1=3.
(1)求a、b的值及数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=loga(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m,n均大于0,则 的最小值为(  )
A.2
B.4
C.8
D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》有如下问题:有上禾三秉(古代容量单位),中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗.问上、中、下禾一秉各几何?依上文:设上、中、下禾一秉分别为x斗、y斗、z斗,设计如图所示的程序框图,则输出的x,y,z的值分别为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形, 交于点, 底面,的中点.

(1).求证: 平面;

(2).求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角坐标 中,设椭圆 的左右两个焦点分别为 ,过右焦点 且与 轴垂直的直线 与椭圆 相交,其中一个交点为 .

(1)求椭圆 的方程;

查看答案和解析>>

同步练习册答案