精英家教网 > 高中数学 > 题目详情

【题目】某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x)(万
元),若年产量不足80千件,C(x)的图象是如图的抛物线,此时C(x)<0的解集为(﹣30,0),且C(x)的最小值是﹣75,若年产量不小于80千件,C(x)=51x+ ﹣1450,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完;

(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

【答案】
(1)解:∵每件商品售价为0.005万元,

∴x千件商品销售额为0.005×1000x万元,

①当0<x<80时,根据年利润=销售收入﹣成本,

∴L(x)=(0.05×1000x)﹣ x2﹣10x﹣250=﹣ x2+40x﹣250;

②当x≥80时,根据年利润=销售收入﹣成本,

∴L(x)=(0.05×1000x)﹣51x﹣ +1450﹣250=1200﹣(x+ ).

综合①②可得,


(2)解:由(1)可知,

①当0<x<80时,L(x)=﹣ x2+40x﹣250=﹣ (x﹣60)2+950

∴当x=60时,L(x)取得最大值L(60)=950万元;

②当x≥80时,L(x)=1200﹣(x+ )≤1200﹣2 =1200﹣200=1000,

当且仅当,即x=100时,L(x)取得最大值L(100)=1000万元.

综合①②,由于950<1000,

∴当产量为10万件时,该厂在这一商品中所获利润最大,最大利润为1000万元


【解析】(1)分两种情况进行研究,当0<x<80时,当x≥80时,根据年利润=销售收入﹣成本,列出函数关系式,投入成本为,根据年利润=销售收入﹣成本,列出函数关系式,最后写成分段函数的形式,从而得到答案;(2)根据年利润的解析式,分段研究函数的最值,当0<x<80时,利用二次函数求最值,当x≥80时,利用基本不等式求最值,最后比较两个最值,即可得到答案

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了得到函数 的图象,只需将函数y=sin2x的图象(
A.向右平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向左平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=x2+2 f(x)dx,则 f(x)dx=(
A.﹣1
B.﹣
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别为具有公共焦点的椭圆和双曲线的离心率,为两曲线的一个公共点,且满

,则的值为 ( )

A. B. 1 C. 2 D. 不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x),y=g(x)的值域均为R,有以下命题:
①若对于任意x∈R都有f[f(x)]=f(x)成立,则f(x)=x.
②若对于任意x∈R都有f[f(x)]=x成立,则f(x)=x.
③若存在唯一的实数a,使得f[g(a)]=a成立,且对于任意x∈R都有g[f(x)]=x2﹣x+1成立,则存在唯一实数x0 , 使得g(ax0)=1,f(x0)=a.
④若存在实数x0 , y0 , f[g(x0)]=x0 , 且g(x0)=g(y0),则x0=y0
其中是真命题的序号是 . (写出所有满足条件的命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在[﹣m,m](m>0)上的函数f(x)= +xcosx(a>0,a≠1)的最大值和最小值分别是M、N,则M+N=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动物园需要用篱笆围成两个面积均为50 的长方形熊猫居室,如图所示,以墙为一边(墙不需要篱笆),并共用垂直于墙的一条边,为了保证活动空间,垂直于墙的边长不小于2m,每个长方形平行于墙的边长也不小于2m

1)设所用篱笆的总长度为l,垂直于墙的边长为x.试用解析式将l表示成x的函数,并确定这个函数的定义域;

2)怎样围才能使得所用篱笆的总长度最小?篱笆的总长度最小是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等比数列,a4+a7=2,a5a6=-8,则a1+a10=(  )

A. 7 B. 5

C. -5 D. -7

【答案】D

【解析】解得

,∴a1a10a1(1+q9)=-7.D.

点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.

型】单选题
束】
8

【题目】在数列{ }中,已知,则等于(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推行新课堂教学法,某化学老师分别用传统教学和新课堂两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为成绩优良”.

分数

[50,59)

[60,69)

[70,79)

[80,89)

[90,100]

甲班频数

5

6

4

4

1

乙班频数

1

3

6

5

5

(1)由以上统计数据填写下面2×2列联表,并判断成绩优良与教学方式是否有关”?

甲班

乙班

总计

成绩优良

成绩不优良

总计

现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为,求的分布列及数学期望.

附: 临界值表

查看答案和解析>>

同步练习册答案